02: Combinatorics

David Varodayan
January 8, 2020
Adapted from slides by Lisa Yan
Takeaways from last time

Inclusion-Exclusion Principle (generalized Sum Rule)

If the outcome of an experiment can be either from Set A or set B, where A and B may overlap, then the total number of outcomes of the experiment is

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

General Principle of Counting (generalized Product Rule)

If an experiment has r steps, such that step i has n_i outcomes for all $i = 1, \ldots, r$, then the total number of outcomes of the experiment is

$$n_1 \times n_2 \times \cdots \times n_r = \prod_{i=1}^{r} n_i.$$
Essential information

<table>
<thead>
<tr>
<th>Website</th>
<th>cs109.stanford.edu</th>
</tr>
</thead>
</table>

Teaching Staff

[Image of teaching staff members]
Today’s plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets
Summary of Combinatorics

Counting tasks on \(n \) objects

- Sort objects (permutations)
 - Distinct (distinguishable): \(n! \)
 - Some distinct: \(\frac{n!}{n_1! n_2! \cdots n_r!} \)

- Choose \(k \) objects (combinations)
 - Distinct: \(\binom{n}{k} \)

- Put objects in \(r \) buckets
 - Distinct: \(\binom{n}{n_1, n_2, \ldots, n_r} \)
 - Indistinct: \(\frac{(n + r - 1)!}{n! (r - 1)!} \)

Stanford University
Today’s plan

- Permutations (sort objects)
 - Combinations (choose objects)
 - Put objects into buckets
Summary of Combinatorics

Counting tasks on n objects

- Sort objects (permutations)
- Choose k objects (combinations)
- Put objects in r buckets

Distinct (distinguishable)
Sort n indistinct objects.
Sort n distinct objects

Ayesha Tim Irina Joey Waddie

\[5 \times 4 \times 3 \times 2 \times 1 \]
Permutations

A permutation is an ordered arrangement of distinct objects.

The number of unique orderings (permutations) of n distinct objects is

$$n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1.$$
Sort semi-distinct objects

All distinct

Ayesha Tim Irina Joey Waddie

Coca-Cola Coca-Cola Zero Coca-Cola Coca-Cola Coca-Cola

5! = 120

Some indistinct

Coke Tim Coke Joey Waddie

Coca-Cola Coca-Cola Zero Coca-Cola Coca-Cola Zero Coca-Cola

\[\frac{5!}{2!} = \frac{120}{2} = 60 \]
Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of distinct objects is a two-step process:

\[
\text{permutations of distinct objects} = \text{permutations considering some objects are indistinct} \times \text{Permutations of just the indistinct objects}
\]
Sort semi-distinct objects

How do we find the number of permutations considering some objects are indistinct?

By the product rule, permutations of distinct objects is a two-step process:

\[
\text{permutations of distinct objects} = \frac{\text{Permutations of just the indistinct objects}}{\text{permutations considering some objects are indistinct}}
\]
General approach to counting permutations

When there are n objects such that

- n_1 are the same (indistinguishable or indistinct), and
- n_2 are the same, and
- ...
- n_r are the same,

The number of unique orderings (permutations) is

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_r!}$$

For each group of indistinct objects,
Divide by the overcounted permutations
Sort semi-distinct objects

How many permutations?

\[
\frac{5!}{2!3!} = 10
\]
How many orderings of letters are possible for the following strings?

1. BOBA
 \[
 \frac{4!}{2! \cdot 1! \cdot 1!} = 12
 \]

2. MISSISSIPPI
 \[
 \frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!} = 34,650
 \]
Summary of Combinatorics

Counting tasks on n objects

- Sort objects (permutations)
 - Distinct (distinguishable)
 - $n!$
 - Some distinct
 - $\frac{n!}{n_1! n_2! \cdots n_r!}$

- Choose k objects (combinations)

- Put objects in r buckets
Today’s plan

Permutations (sort objects)

→ Combinations (choose objects)

Put objects into buckets
Summary of Combinatorics

Counting tasks on n objects

- Sort objects (permutations): $n!$
- Choose k objects (combinations):
 \[
 \frac{n!}{n_1! n_2! \cdots n_r!}
 \]
- Put objects in r buckets: Distinct

Stanford University
Combinations with cake

There are $n = 20$ people. How many ways can we choose $k = 5$ people to get cake?

Consider the following generative process...
Combinations with cake

There are \(n = 20 \) people. How many ways can we **choose** \(k = 5 \) people to get cake?

1. \(n \) people get in line

\(n! \) ways
Combinations with cake

There are $n = 20$ people. How many ways can we choose $k = 5$ people to get cake?

1. n people get in line
2. Put first k in cake room

$n!$ ways

1 way
Combinations with cake

There are \(n = 20 \) people.
How many ways can we choose \(k = 5 \) people to get cake?

1. \(n \) people get in line
 \(n! \) ways

2. Put first \(k \) in cake room
 1 way

\[\text{overcounting} \quad 5! \]
Combinations with cake

There are \(n = 20 \) people. How many ways can we choose \(k = 5 \) people to get cake?

1. \(n \) people get in line
 - \(n! \) ways

2. Put first \(k \) in cake room
 - 1 way

3. Allow cake group to mingle
 - \(k! \) different permutations lead to the same mingle
Combinations with cake

There are $n = 20$ people. How many ways can we choose $k = 5$ people to get cake?

1. n people get in line
 - $n!$ ways

2. Put first k in cake room
 - 1 way

3. Allow cake group to mingle
 - $k!$ different permutations lead to the same mingle

4. Allow non-cake group to mingle

Stanford University
Combinations with cake

There are $n = 20$ people.
How many ways can we choose $k = 5$ people to get cake?

1. n people get in line
 $n!$ ways

2. Put first k in cake room
 1 way

3. Allow cake group to mingle
 $k!$ different permutations lead to the same mingle

4. Allow non-cake group to mingle
 $(n - k)!$ different permutations lead to the same mingle
Combinations

A combination is an unordered selection of k objects from a set of n distinct objects.

The number of ways of making this selection is

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{k}
\]

Interesting

\[
\binom{n}{k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}
\]
Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?

\[\binom{6}{3} = \frac{6!}{3!3!} = 20 \]
Probability textbooks

1. How many ways are there to choose 3 books from a set of 6 distinct books?
 \[
 \binom{6}{3} = \frac{6!}{3! \cdot 3!} = 20 \text{ ways}
 \]

2. What if we do not want to read both the 9th and 10th edition of Ross?

 Case 1: 9th ed + 2 other of 4
 \[
 \binom{4}{2} = 6
 \]

 Case 2: 10th ed + 2 other of 4
 \[
 \binom{4}{2} = 6
 \]

 \[
 \binom{4}{3} = 4
 \]

 \[
 \begin{pmatrix}
 \binom{4}{2} = 6 \\
 \binom{4}{3} = 4
 \end{pmatrix}
 \]

 Total: 16 ways
Probability textbooks (solution 2)

1. How many ways are there to choose 3 books from a set of 6 distinct books?

\[
\binom{6}{3} = \frac{6!}{3! 3!} = 20 \text{ ways}
\]

2. What if we do not want to read both the 9th and 10th edition of Ross?

Forbidden Case: 9th ed + 10th ed + 1 other book of 4

\[
\binom{4}{1} = 4
\]

So answer = 20 - 4 = 16

Sometimes easier to exclude forbidden cases.
Break
Announcements

PS#1
Out: today
Due: Friday 1/17, 1:00pm
Covers: through Friday

Staff help
Piazza policy: student discussion
Office hours: start today
cs109.stanford.edu/staff.html

Python tutorial
When: Friday 3:30-4:20pm
Location: 420-041
Recorded?: maybe
Notes: to be posted online

Section sign-ups
Preference form: today
Due: Saturday 1/11
Results: latest Monday
Geometric series:

\[\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \]

\[\sum_{i=m}^{n} x^i = \frac{x^{n+1}-x^m}{x-1} \]

\[\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ if } |x| < 1 \]

Integration by parts (everyone’s favorite!):

Choose a suitable \(u \) and \(dv \) to decompose the integral of interest:

\[\int u \cdot dv = u \cdot v - \int v \cdot du \]
Summary of Combinatorics

Counting tasks on \(n \) objects

- **Sort objects (permutations)**
 - Distinct (distinguishable): \(n! \)
 - Some distinct: \(\frac{n!}{n_1! n_2! \cdots n_r!} \)

- **Choose \(k \) objects (combinations)**
 - Distinct: \(\binom{n}{k} \)

- **Put objects in \(r \) buckets**
 - 1 group
 - \(r \) groups

Stanford University
General approach to combinations

The number of ways to choose r groups of n distinct objects such that

For all $i = 1, \ldots, r$, group i has size n_i, and $\Sigma_{i=1}^{r} n_i = n$ (all objects are assigned), is

\[
\frac{n!}{n_1! n_2! \ldots n_r!} = \binom{n}{n_1, n_2, \ldots, n_r}
\]

Multinomial Coefficient
Datacenters

13 different computers are to be allocated to 3 datacenters as shown in the table:

<table>
<thead>
<tr>
<th>Datacenter</th>
<th># machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

How many different divisions are possible?

\[
\binom{13}{6,4,3} = \frac{13!}{6!4!3!} = 60\,060
\]
Datacenters (solution 2)

13 different computers are to be allocated to 3 datacenters as shown in the table:

How many different divisions are possible?

Steps:
1. Choose 6 computers for A \(\binom{13}{6} \)
2. Choose 4 computers for B \(\binom{7}{4} \)
3. Choose 3 computers for C \(\binom{3}{3} \)

Choose \(k \) of \(n \) distinct objects into \(r \) groups of size \(n_1, \ldots, n_r \) \(\binom{n}{n_1, n_2, \ldots, n_r} \)

Datacenter	# machines
A | 6
B | 4
C | 3

\(\binom{13}{6} \binom{7}{4} \binom{3}{3} = 60,060 \)
Summary of Combinatorics

Counting tasks on \(n \) objects

- Sort objects (permutations)
 - Distinct (distinguishable)
 - \(n! \)
- Choose \(k \) objects (combinations)
 - Some distinct
 - \(\frac{n!}{n_1! n_2! \cdots n_r!} \)
 - Distinct
 - \(\binom{n}{k} \)
 - Same
 - 1 group
- Distinct
 - \(\binom{n}{n_1, n_2, \cdots, n_r} \)

Put objects in \(r \) buckets

Indistinct?

Stanford University 38
A trick question

How many ways are there to group 6 indistinct (indistinguishable) objects into 3 groups, where group A, B, and C have size 1, 2, and 3, respectively?

Only 1

Choose k of n distinct objects into r groups of size n_1, \ldots, n_r \[\binom{n}{n_1, n_2, \ldots, n_r} \]
Today’s plan

Permutations (sort objects)

Combinations (choose objects)

Put objects into buckets
Summary of Combinatorics

Counting tasks on n objects

- Sort objects (permutations)
 - Distinct (distinguishable)
 - $n!$
 - Some distinct
 - $\frac{n!}{n_1!n_2! \cdots n_r!}$
- Choose k objects (combinations)
 - Distinct
 - $\binom{n}{k}$
 - Some distinct
 - $\binom{n}{n_1, n_2, \ldots, n_r}$
- Put objects in r buckets
 - Distinct
 - Indistinct
Hash tables and **distinct** strings

How many ways are there to hash *n* **distinct** strings to *r* buckets?

Steps:

1. Bucket 1\(^{\text{st}}\) string
2. Bucket 2\(^{\text{nd}}\) string
 ...
3. Bucket *n*\(^{\text{th}}\) string

\[\text{Total} = r^n \]
Summary of Combinatorics

Counting tasks on \(n \) objects

Sort objects (permutations)

- Distinct (distinguishable)
 \(n! \)

Choose \(k \) objects (combinations)

- Some distinct
 \(\frac{n!}{n_1!n_2! \cdots n_r!} \)
 \(\binom{n}{k} \)

- Distinct
 \(\binom{n}{n_1, n_2, \ldots, n_r} \)

Put objects in \(r \) buckets

- Distinct
 \(r^n \)

- Indistinct

Stanford University
Hash tables and **indistinct** strings

How many ways are there to distribute n **indistinct** strings to r buckets?

Goal

Bucket 1 has x_1 strings,
Bucket 2 has x_2 strings,
...
Bucket r has x_r strings (the rest)

How many different sets of counts are possible?
Simple example: \(n = 3 \) strings and \(r = 2 \) buckets

<table>
<thead>
<tr>
<th>sss</th>
<th>ss/s</th>
<th>s/s</th>
<th>s/s/s</th>
</tr>
</thead>
</table>

All permutations of three S and are divider:

\[
\frac{4!}{3! \cdot 1!} = \binom{4}{1} = 4
\]
Bicycle helmet sales

How many ways can we assign $n = 5$ indistinguishable children to $r = 4$ distinct bicycle helmet styles?

Consider the following generative process...
Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign \(n = 5 \) indistinguishable children to \(r = 4 \) distinct bicycle helmet styles?

\(n = 5 \) indistinct objects \hspace{1cm} r = 4 \) distinct buckets
Bicycle helmet sales: 1 possible assignment outcome

How many ways can we assign \(n = 5 \) indistinguishable children to \(r = 4 \) distinct bicycle helmet styles?

\[
\begin{align*}
n &= 5 \text{ indistinct objects} & r &= 4 \text{ distinct buckets}
\end{align*}
\]

Goal: Order \(n \) indistinct objects and \(r - 1 \) indistinct dividers.
Bicycle helmet sales: A generative proof

How many ways can we assign $n = 5$ indistinguishable children to $r = 4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r - 1$ indistinct dividers.

0. Make objects and dividers distinct
Bicycle helmet sales: A generative proof

How many ways can we assign \(n = 5 \) indistinguishable children to \(r = 4 \) distinct bicycle helmet styles?

Goal Order \(n \) indistinct objects and \(r - 1 \) indistinct dividers.

0. Make objects and dividers distinct

1. Order \(n \) distinct objects and \(r - 1 \) distinct dividers
 \[(n + r - 1)! \]
Bicycle helmet sales: A generative proof

How many ways can we assign $n = 5$ indistinguishable children to $r = 4$ distinct bicycle helmet styles?

Goal Order n indistinct objects and $r - 1$ indistinct dividers.

0. Make objects and dividers distinct

1. Order n distinct objects and $r - 1$ distinct dividers

 \[
 (n + r - 1)!
 \]

2. Make n objects indistinct

 \[
 \frac{1}{n!}
 \]
Bicycle helmet sales: A generative proof

How many ways can we assign \(n = 5 \) indistinguishable children to \(r = 4 \) distinct bicycle helmet styles?

Goal Order \(n \) indistinct objects and \(r - 1 \) indistinct dividers.

0. Make objects and dividers distinct

1. Order \(n \) distinct objects and \(r - 1 \) distinct dividers

\[(n + r - 1)!\]

2. Make \(n \) objects indistinct

\[\frac{1}{n!}\]

3. Make \(r - 1 \) dividers indistinct

\[\frac{1}{(r - 1)!}\]
Divider method

The number of ways to distribute n indistinct objects into r buckets is equivalent to the number of ways to permute $n + r - 1$ objects such that n are indistinct objects, and $r - 1$ are indistinct dividers:

$$\text{Total} = \frac{(n+r-1)!}{n!} \cdot \frac{1}{(r-1)!} = \binom{n+r-1}{r-1}$$
Summary of Combinatorics

Counting tasks on \(n \) objects

Sort objects (permutations)

- Distinct (distinguishable): \(n! \)
- Some distinct: \(\frac{n!}{n_1! n_2! \cdots n_r!} \)

Choose \(k \) objects (combinations)

- Distinct: \(\binom{n}{k} \)
- 1 group: \(\binom{n}{n_1, n_2, \ldots, n_r} \)
- \(r \) groups: \(\binom{n}{n_1, n_2, \ldots, n_r} \)

Put objects in \(r \) buckets

- Distinct: \(r^n \)
- Indistinct: \(\frac{(n + r - 1)!}{n! (r - 1)!} \)