o8: Poisson and More

Lisa Yan
October 9, 2019
Discrete random variables

Definition

Experiment outcomes

Discrete Random Variable, X

$P(X = x) = p(x)$

Properties

$E[X]$ $E[X^2]$ $Var(X)$ $SD(X)$

Note: Random Variables also called distributions
Variance

The variance of a random variable \(X \) with mean \(E[X] = \mu \) is

\[
\text{Var}(X) = E[(X - \mu)^2]
\]

Why isn’t variance defined as \(E[X - E[X]] \)?

\[
E[X - E[X]] = E[X] - E[X] = 0 \quad \text{Linearity of expectation!}
\]
Binomial random variable

$X \sim \text{Bin}(n, p)$

<table>
<thead>
<tr>
<th>Range: {0,1,...,n} (aka support)</th>
</tr>
</thead>
</table>

PMF

$P(X = k) = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Expectation

$E[X] = np$

Variance

$\text{Var}(X) = np(1 - p)$

1. The random variable
2. is distributed as a
3. Binomial
4. with parameters

independent trials

P(success) on each trial
Today’s plan: Hurricanes

What is the probability of an extreme weather event?
Today’s plan

- Poisson
- Poisson Paradigm
- Some more Discrete RVs (if time)
Before we start

The natural exponent e:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$$

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli while studying compound interest in 1683
Algorithmic ride sharing

Probability of \(k \) requests from this area in the next 1 minute?

Suppose we know: On average, \(\lambda = 5 \) requests per minute
Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60 seconds:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

At each second:
- Independent trial
- You get a request (1) or you don’t (0).

Let $X = \#$ of requests in minute.

$E[X] = \lambda = 5$

$X \sim \text{Bin}(n = 60, \ p = 5/60)$

$P(X = k) = \binom{60}{k} \left(\frac{5}{60}\right)^k \left(1 - \frac{5}{60}\right)^{n-k}$

But what if there are two requests in the same second?
Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into 60,000 milliseconds:

At each millisecond:
- Independent trial
- You get a request (1) or you don’t (0).

Let $X =$ # of requests in minute.

$E[X] = \lambda = 5$

$X \sim \text{Bin}(n = 60000, \ p = \lambda/n)$

$$P(X = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

But what if there are two requests in the same millisecond?
Algorithmic ride sharing, approximately

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

Break a minute down into infinitely small buckets:

For each time bucket:
- Independent trial
- You get a request (1) or you don’t (0).

Let $X = \#$ of requests in minute.

$E[X] = \lambda = 5$

$X \sim \text{Bin}(n, \ p = \lambda/n)$

$P(X = k) = \lim_{n\to\infty} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$

Who wants to see some cool math?
Binomial in the limit

\[P(X = k) = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} \]

Expand

\[= \lim_{n \to \infty} \frac{n!}{k!(n-k)!} \frac{\lambda^k}{(1 - \frac{\lambda}{n})^k} \]

Def natural exponent

\[= \lim_{n \to \infty} \frac{n!}{n^k (n-k)!} \frac{\lambda^k}{(1 - \frac{\lambda}{n})^k} \]

Expand

\[= \lim_{n \to \infty} \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{\lambda^k}{(1 - \frac{\lambda}{n})^k} \]

Limit analysis + cancel

\[= \lim_{n \to \infty} \frac{n^k}{n^k} \frac{\lambda^k}{k!} \frac{e^{-\lambda}}{1} \]

Simplify

\[= \frac{\lambda^k}{k!} e^{-\lambda} \]
Algorithmic ride sharing

Probability of k requests from this area in the next 1 minute?

On average, $\lambda = 5$ requests per minute

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
Simeon-Denis Poisson

French mathematician (1781 – 1840)
• Published his first paper at age 18
• Professor at age 21
• Published over 300 papers

“Life is only good for two things: doing mathematics and teaching it.”
Poisson Random Variable

Consider an experiment that lasts a fixed interval of time.

def A Poisson random variable X is the number of successes over the experiment duration.

\[
X \sim \text{Poi}(\lambda)
\]

PMF

\[
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}
\]

Range: \{0, 1, 2, ... \}

Expectation

\[
E[X] = \lambda
\]

Variance

\[
\text{Var}(X) = \lambda
\]

Examples:

- # earthquakes per year
- # server hits per second
- # of emails per day

Yes, expectation and variance of Poisson are the same (shown later)
Poisson process

1. Consider events that occur over time.
 - Event: earthquakes, radioactive decay, web server hits, etc.
 - Time interval: 1 year, 1 sec, whatever
 - Events arrive at average rate \(\lambda \) events/time interval

2. Split time interval into \(n \rightarrow \infty \) subintervals.
 - Assume at most one event per sub-interval.
 - Event occurrences in sub-intervals are independent.
 - With many sub-intervals, probability of event occurring in any given sub-interval is small

3. Let \(X = \# \) events in original time interval.
 \(X \sim \text{Poi}(\lambda) \)

Use Poisson if you:
 - have a rate
 - care about \(\# \) occurrences

\[
X \sim \text{Poi}(\lambda) \quad E[X] = \lambda \quad p(k) = e^{-\lambda} \frac{\lambda^k}{k!}
\]
Earthquakes

There are an average of 2.79 major earthquakes in the world each year. What is the probability of 3 major earthquakes happening next year?

1. Define RVs

\[X \sim \text{Poi}(2.79) \]

2. Solve

\[
P(X = 3) = e^{-\lambda} \frac{\lambda^k}{k!}
\]

where \(k = 3, \lambda = 2.79 \)

\[
= e^{-2.79} \frac{(2.79)^3}{3!} \approx 0.23
\]
Are earthquakes really Poissonian?

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

BY J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.
Web server load

Consider requests to a web server in 1 second.

- In the past, server load averages 2 hits/second.
- Let $X = \#$ hits the server receives in a second.

What is $P(X < 5)$?

1. Define RVs

2. Solve

$$X \sim \text{Poi}(\lambda = 2)$$

$$P(X < 5) = \sum_{k=0}^{4} P(X = k) = \sum_{k=0}^{4} e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{, where } \lambda = 2$$

$$= \sum_{k=0}^{4} e^{-2} \frac{2^k}{k!} \approx 0.95$$
Today’s plan

Poisson

Poisson Paradigm

Some more Discrete RVs
All the movies, images, emails and other digital data from more than 600 smartphones (10,000 GB) can be stored in the faint pink smear of DNA at the end of this test tube.

What is the probability that DNA storage stays uncorrupted?
DNA

What is the probability that DNA storage stays uncorrupted?

- In DNA (and real networks), we store large strings.
- Let string length be long, e.g., $n \approx 10^4$
- Probability of corruption of each base pair is very small, e.g., $p = 10^{-6}$
- Let $X = \text{# of corruptions}$.

What is $P(\text{DNA storage is uncorrupted}) = P(X = 0)$?

1. Approach 1:

 $X \sim \text{Bin}(n = 10^4, p = 10^{-6})$

 $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

 ≈ 0.99049829

2. Approach 2:

 $X \sim \text{Poi}(\lambda = 10^4 \cdot 10^{-6} = 0.01)$

 $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-0.01} \frac{0.01^0}{0!}$

 ≈ 0.99049834 a good approximation!
The Poisson Paradigm, part 1

Poisson approximates Binomial when \(n \) is large, \(p \) is small, and \(\lambda = np \) is “moderate.”

Different interpretations of “moderate”:
- \(n > 20 \) and \(p < 0.05 \)
- \(n > 100 \) and \(p < 0.1 \)

Poisson is Binomial in the limit:
- \(\lambda = np \), where \(n \to \infty, p \to 0 \)
The Poisson Paradigm, part 1

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":
• $n > 20$ and $p < 0.05$
• $n > 100$ and $p < 0.1$

Poisson is Binomial in the limit:
• $\lambda = np$, where $n \to \infty, p \to 0$
Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is "moderate."

Different interpretations of "moderate":
- $n > 20$ and $p < 0.05$
- $n > 100$ and $p < 0.1$

Poisson is Binomial in the limit:
- $\lambda = np$, where $n \rightarrow \infty$, $p \rightarrow 0$
Can these Binomial RVs be approximated?

Poisson approximates Binomial when \(n \) is large, \(p \) is small, and \(\lambda = np \) is “moderate.”

Different interpretations of “moderate”:

- \(n > 20 \) and \(p < 0.05 \)
- \(n > 100 \) and \(p < 0.1 \)

Poisson is Binomial in the limit:

- \(\lambda = np \), where \(n \to \infty, p \to 0 \)
Can these Binomial RVs be approximated?

Poisson approximates Binomial when n is large, p is small, and $\lambda = np$ is “moderate.”

Different interpretations of “moderate”:
- $n > 20$ and $p < 0.05$
- $n > 100$ and $p < 0.1$

Poisson is Binomial in the limit:
- $\lambda = np$, where $n \to \infty, p \to 0$
Break for jokes/announcements
Consider an experiment that lasts a fixed interval of time.

def A **Poisson** random variable X is the number of occurrences over the experiment duration.

PMF

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Expectation

$$E[X] = \lambda$$

Variance

$$\text{Var}(X) = \lambda$$

Examples:
- # earthquakes per year
- # server hits per second
- # of emails per day

Yes, expectation and variance of Poisson are the same (intuition now)
Properties of Poi(\(\lambda\)) with the Poisson paradigm

Recall the Binomial:

\[
Y \sim \text{Bin}(n, p)
\]

- **Expectation** \(E[Y] = np\)
- **Variance** \(\text{Var}(Y) = np(1 - p)\)

Consider \(X \sim \text{Poi}(\lambda)\), where \(\lambda = np\) \((n \to \infty, p \to 0)\):

\[
X \sim \text{Poi}(\lambda)
\]

- **Expectation** \(E[X] = \lambda\)
- **Variance** \(\text{Var}(X) = \lambda\)

Proof:

\[
E[X] = np = \lambda
\]

\[
\text{Var}(X) = np(1 - p) \to \lambda(1 - 0) = \lambda
\]
A Real License Plate Seen at Stanford

No, it’s not mine...
but I kind of wish it was.
Poisson Paradigm, part 2

Poisson can still provide a good approximation of the Binomial, even when assumptions are “mildly” violated.

You can apply the Poisson approximation when:

• "Successes” in trials are not entirely independent
 e.g.: # entries in each bucket in large hash table.

• Probability of “Success” in each trial varies (slightly),
 like a small relative change in a very small p
 e.g.: Average # requests to web server/sec may fluctuate
 slightly due to load on network
Today’s plan

Poisson

Poisson Paradigm

Some more Discrete RVs
More discrete RVs

Part of CS109 learning goals:
• Translate a problem statement into a random variable
• Understand new random variables

We focus primarily on Binomial, Bernoulli, and Poisson.

Here are a few more to get a sense of how random variables work.

Focus on understanding how and when to use RVs, not on memorizing PMFs.
Consider an experiment: independent trials of Ber(p) random variables. A Geometric random variable X is the number of trials until the first success.

Geometric RV

- **PMF**
 \[P(X = k) = (1 - p)^{k-1} p \]
- **Expectation**
 \[E[X] = \frac{1}{p} \]
- **Variance**
 \[\text{Var}(X) = \frac{1-p}{p^2} \]

Examples:
- Flipping a coin ($P($heads$) = p$) until first heads appears
- Generate bits with $P($bit $= 1) = p$ until first 1 generated
Consider an experiment: independent trials of $\text{Ber}(p)$ random variables.

def A **Negative Binomial** random variable X is the # of trials until r successes.

\[X \sim \text{NegBin}(r, p) \]

PMF
\[P(X = k) = \binom{k-1}{r-1} (1-p)^{k-r} p^r \]

Expectation
\[E[X] = \frac{r}{p} \]

Variance
\[\text{Var}(X) = \frac{r(1-p)}{p^2} \]

Range: \(\{r, r + 1, \ldots \} \)

Examples:
- Flipping a coin until r^{th} heads appears
- # of strings to hash into table until bucket 1 has r entries

\[\text{Geo}(p) = \text{NegBin}(1, p) \]
Grid of random variables

<table>
<thead>
<tr>
<th>Number of successes</th>
<th>Time until success</th>
</tr>
</thead>
<tbody>
<tr>
<td>One trial</td>
<td></td>
</tr>
<tr>
<td>$Ber(p)$</td>
<td>$Geo(p)$</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>$r = 1$</td>
</tr>
<tr>
<td>Several trials</td>
<td></td>
</tr>
<tr>
<td>$Bin(n, p)$</td>
<td>$NegBin(r, p)$</td>
</tr>
<tr>
<td></td>
<td>(tomorrow)</td>
</tr>
<tr>
<td>Interval of time</td>
<td></td>
</tr>
<tr>
<td>$Poi(\lambda)$</td>
<td></td>
</tr>
</tbody>
</table>

- $Ber(p)$: One success
- $Geo(p)$: Several successes
- $NegBin(r, p)$: Interval of time to first success
- $Poi(\lambda)$
Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability $p = 0.1$ of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/RVs & state goal

 $X \sim \text{some distribution}$

 Want: $P(X = 5)$

2. Solve

 A. $X \sim \text{Bin}(5, 0.1)$
 B. $X \sim \text{Poi}(0.5)$
 C. $X \sim \text{NegBin}(5, 0.1)$
 D. $X \sim \text{NegBin}(1, 0.1)$
 E. $X \sim \text{Geo}(0.1)$
 F. None/other
Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.
• Each ball has probability $p = 0.1$ of capturing the Pokemon.
• Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/ RVs & state goal

\[X \sim \text{some distribution} \]

Want: $P(X = 5)$

2. Solve

A. $X \sim \text{Bin}(5, 0.1)$
B. $X \sim \text{Poi}(0.5)$
C. $X \sim \text{NegBin}(5, 0.1)$
D. $X \sim \text{NegBin}(1, 0.1)$
E. $X \sim \text{Geo}(0.1)$
F. None/other

Be clear about what is variable (unknown) in the problem setup.
Catching Pokemon

Wild Pokemon are captured by throwing Pokeballs at them.
- Each ball has probability $p = 0.1$ of capturing the Pokemon.
- Each ball is an independent trial.

What is the probability that you catch the Pokemon on the 5th try?

1. Define events/RVs & state goal

 $X \sim \text{Geo}(0.1)$

 Want: $P(X = 5)$

2. Solve

 $P(X = 5) = (1 - p)^{k-1}p$, where $k = 5, p = 0.1$

 $= (0.9)^4(0.1)$

 ≈ 0.066
Hurricanes

What is the probability of an extreme weather event?

How do we model the number of hurricanes in a season (year)?

👉 Step 1. graph your distribution.
Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

A.

B.
Hurricanes per year since 1851

Which graph is a histogram (i.e., distribution) of frequency (# of hurricanes per year)?

A.

B. Looks kinda Poissonian!
Hurricanes

How do we model the number of hurricanes in a season (year)?

Step 2. Find a reasonable distribution (Poisson) and compute parameters.

To the code!!
Improbability

Until 1966, things look pretty Poisson.

What is the probability of over 15 hurricanes in a season (year) given that the distribution doesn’t change?

\[P(X > 15) = 1 - P(X \leq 15) \]

\[= 1 - \sum_{k=0}^{15} P(X = k) \]

\[= 1 - 0.986 = 0.014 \]

This is the PMF of a Poisson. Your favorite programming language has a function for it.

In Python 3: `from scipy import stats
X = stats.poisson(8.5)
X.pmf(k)`
Hurricanes

How do we model the number of hurricanes in a season (year)?

Step 3. See if there are outliers
Improbability

Since 1966, there have been two years with over 30 hurricanes.

What is the probability of over 30 hurricanes in a season (year) given that the distribution doesn’t change?

\[
P(X > 30) = 1 - P(X \leq 30)
\]

\[
= 1 - \sum_{k=0}^{30} P(X = k)
\]

\[
= 2.2 \times 10^{-9}
\]

This is the PMF of a Poisson.

Your favorite programming language has a function for it.

In Python 3: from scipy import stats

\[
X = \text{stats.poisson}(8.5)
\]

\[
X.pmf(k)
\]
The distribution has changed.

1851–1966

Since 1966

Poi(16.7?)

Count (1966-2015)

Poi(8.5)

Count (1851-1966)
What changed?

CO2 levels over the last 10,000 years

Global annual average surface temperature

Annual anomaly relative to 1961-1990 (°C)
What changed?

It’s not just climate change. We also have better data collection now.
Python SciPy RV methods

```python
from scipy import stats
X = stats.poisson(8.5) # great package
X.pmf(2) # X ~ Poi(\lambda = 8.5)
# P(X = 2)
```

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.pmf(k)</td>
<td>P(X = k)</td>
</tr>
<tr>
<td>X.cdf(k)</td>
<td>P(X \leq k)</td>
</tr>
<tr>
<td>X.mean()</td>
<td>E[X]</td>
</tr>
<tr>
<td>X.var()</td>
<td>Var(X)</td>
</tr>
<tr>
<td>X.std()</td>
<td>SD(X)</td>
</tr>
</tbody>
</table>

SciPy reference: