Quick slide reference

3 Normal Approximation 11a_normal_approx
13 Discrete Joint RVs 11b_discrete_joint
26 Multinomial RV 11c_multinomial
34 Exercises LIVE
Normal Approximation
Normal RVs

\[X \sim \mathcal{N}(\mu, \sigma^2) \]

- Used to model many real-life situations because it maximizes entropy (i.e., randomness) for a given mean and variance
- Also useful for approximating the Binomial random variable!
Website testing

- 100 people are given a new website design.
- $X = \# \text{ people whose time on site increases}$
- The design actually has no effect, so $P(\text{time on site increases}) = 0.5$ independently.
- CEO will endorse the new design if $X \geq 65$.

What is $P(\text{CEO endorses change})$? Give a numerical approximation.

Approach 1: Binomial

Define

$X \sim \text{Bin}(n = 100, p = 0.5)$

Want: $P(X \geq 65)$

Solve

$$P(X \geq 65) = \sum_{i=65}^{100} \binom{100}{i} 0.5^i (1 - 0.5)^{100-i}$$
Don’t worry, Normal approximates Binomial

Galton Board

(We’ll explain why in 2 weeks’ time)
Website testing

- 100 people are given a new website design.
- \(X = \# \text{ people whose time on site increases} \)
- The design actually has no effect, so \(P(\text{time on site increases}) = 0.5 \) independently.
- CEO will endorse the new design if \(X \geq 65 \).

What is \(P(\text{CEO endorses change})? \) Give a numerical approximation.

Approach 1: Binomial

Define
\[
X \sim \text{Bin}(n = 100, \ p = 0.5)
\]
Want: \(P(X \geq 65) \)

Solve
\[
P(X \geq 65) \approx 0.0018
\]

Approach 2: approximate with Normal

Define
\[
Y \sim \mathcal{N}(\mu, \sigma^2)
\]
\[
\mu = np = 50
\]
\[
\sigma^2 = np(1 - p) = 25
\]
\[
\sigma = \sqrt{25} = 5
\]

Solve
\[
P(X \geq 65) \approx P(Y \geq 65) = 1 - F_Y(65)
\]
\[
= 1 - \Phi\left(\frac{65 - 50}{5}\right) = 1 - \Phi(3) \approx 0.0013 \]

⚠️⚠️🤨

(this approach is actually missing something)
Website testing (with continuity correction)

In our website testing, $Y \sim \mathcal{N}(50, 25)$ approximates $X \sim \text{Bin}(100, 0.5)$.

$P(X \geq 65) \approx P(Y \geq 64.5) \approx 0.0018$

You must perform a continuity correction when approximating a Binomial RV with a Normal RV.
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td></td>
</tr>
</tbody>
</table>
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td>$P(5.5 \leq Y \leq 6.5)$</td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td>$P(Y \geq 5.5)$</td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td>$P(Y \geq 6.5)$</td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td>$P(Y \leq 5.5)$</td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td>$P(Y \leq 6.5)$</td>
</tr>
</tbody>
</table>
Who gets to approximate?

\[X \sim \text{Bin}(n, p) \]
\[E[X] = np \]
\[\text{Var}(X) = np(1 - p) \]

\[Y \sim \text{Poi}(\lambda) \]
\[\lambda = np \]

\[? \]

\[Y \sim \mathcal{N}(\mu, \sigma^2) \]
\[\mu = np \]
\[\sigma^2 = np(1 - p) \]
Who gets to approximate?

1. If there is a choice, use Normal to approximate.
2. When using Normal to approximate a discrete RV, use a continuity correction.

Poisson approximation
- n large (> 20), p small (< 0.05)
- slight dependence okay

Normal approximation
- n large (> 20), p mid-ranged ($np(1 - p) > 10$)
- independence
Discrete Joint RVs
From last time

What is the probability that the Warriors win?
How do you model zero-sum games?

Review

$$P(A_W > A_B)$$

This is a probability of an event involving two random variables!
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X = 1)$</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variable</td>
<td>probability of an event</td>
<td>probability mass function</td>
</tr>
</tbody>
</table>
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X = 1)$</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variable</td>
<td>probability of an event</td>
<td>probability mass function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X, Y</th>
<th>$P(X = 1 \cap Y = 6)$</th>
<th>$P(X = a, Y = b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variables</td>
<td>$P(X = 1, Y = 6)$</td>
<td>new notation: the comma</td>
</tr>
<tr>
<td>probability of the intersection of two events</td>
<td>joint probability mass function</td>
<td></td>
</tr>
</tbody>
</table>
Discrete joint distributions

For two discrete joint random variables X and Y, the joint probability mass function is defined as:

$$p_{X,Y}(a, b) = P(X = a, Y = b)$$

The marginal distributions of the joint PMF are defined as:

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y)$$

$$p_Y(b) = P(Y = b) = \sum_x p_{X,Y}(x, b)$$

Use marginal distributions to get a 1-D RV from a joint PMF.
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

$$p_{X,Y}(a, b) = \frac{1}{36} \quad (a, b) \in \{(1,1), \ldots, (6,6)\}$$

<table>
<thead>
<tr>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/36</td>
</tr>
</tbody>
</table>

- **Probability table**
 - All possible outcomes for several discrete RVs
 - Not parametric (e.g., parameter p in $\text{Ber}(p)$)
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

$$p_{X,Y}(a, b) = 1/36 \quad (a, b) \in \{(1,1), \ldots, (6,6)\}$$

2. What is the marginal PMF of X?

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y) = \sum_{y=1}^{6} 1/36 = 1/6 \quad a \in \{1, \ldots, 6\}$$
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>?</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|X (Macs)$

|Y (PCs)$
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

A joint PMF must sum to 1:

$$\sum_x \sum_y p_{x,y}(x, y) = 1$$
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>.39</td>
<td>.38</td>
<td>.19</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>.38</td>
<td>.38</td>
<td>.19</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>.39</td>
<td>.38</td>
<td>.19</td>
</tr>
</tbody>
</table>

A household has X Macs and Y PCs. Each house has a maximum of 3 computers (Macs + PCs) in the house.
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?

\[
\begin{array}{c|cccc}
 & X (\# \text{ Macs}) & 0 & 1 & 2 & 3 \\
\hline
0 & A & .16 & .12 & .07 & .04 \
1 & & .12 & .14 & .12 & 0 \
2 & & .07 & .12 & 0 & 0 \
3 & & .04 & 0 & 0 & 0 \\
\hline
\end{array}
\]

A. \(p_{X,Y}(x, 0) = P(X = x, Y = 0) \)

B. Marginal PMF of X \(p_X(x) = \sum_y p_{X,Y}(x, y) \)

C. Marginal PMF of Y \(p_Y(y) = \sum_x p_{X,Y}(x, y) \)

To find a marginal distribution over one variable, sum over all other variables in the joint PMF.
A computer (or three) in every house.

Consider households in Silicon Valley.

• A household has X Macs and Y PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let $C = X + Y$. What is $P(C = 3)$?

<table>
<thead>
<tr>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (# PCs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A computer (or three) in every house.

Consider households in Silicon Valley.

• A household has X Macs and Y PCs.
• Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let $C = X + Y$. What is $P(C = 3)$?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$P(C = 3) = P(X + Y = 3)$

= $\sum_{x} \sum_{y} P(X + Y = 3|X = x, Y = y)P(X = x, Y = y)$

= $P(X = 0, Y = 3) + P(X = 1, Y = 2)$
+ $P(X = 2, Y = 1) + P(X = 3, Y = 0)$

We’ll come back to sums of RVs next lecture!
Multinomial RV
Recall the good times

Permutations

\(n!\)

How many ways are there to order \(n\) objects?
Counting unordered objects

Binomial coefficient
How many ways are there to group \(n \) objects into two groups of size \(k \) and \(n - k \), respectively?

\[
\binom{n}{k} = \frac{n!}{k! (n - k)!}
\]

Called the binomial coefficient because of something from Algebra

Multinomial coefficient
How many ways are there to group \(n \) objects into \(r \) groups of sizes \(n_1, n_2, \ldots, n_r \), respectively?

\[
\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}
\]

Multinomials generalize Binomials for counting.
Probability

Binomial RV

What is the probability of getting k successes and $n - k$ failures in n trials?

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Multinomial RV

What is the probability of getting c_1 of outcome 1, c_2 of outcome 2, ..., and c_m of outcome m in n trials?

Binomial # of ways of ordering the successes

Probability of each ordering of k successes is equal + mutually exclusive

Multinomial RVs also generalize Binomial RVs for probability!
Multinomial Random Variable

Consider an experiment of n independent trials:
- Each trial results in one of m outcomes. $P(\text{outcome } i) = p_i$, $\sum_{i=1}^{m} p_i = 1$
- Let $X_i = \#$ trials with outcome i

Joint PMF

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m}$$

where $\sum_{i=1}^{m} c_i = n$ and $\sum_{i=1}^{m} p_i = 1$

Multinomial # of ways of ordering the outcomes

Probability of each ordering is equal + mutually exclusive
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.

What is the probability of getting:

- 1 one
- 1 two
- 2 fours
- 3 sixes
- 0 threes
- 0 fives
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.

What is the probability of getting:

- 1 one
- 1 two
- 0 threes
- 2 fours
- 0 fives
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} (\frac{1}{6})^1 (\frac{1}{6})^1 (\frac{1}{6})^0 (\frac{1}{6})^2 (\frac{1}{6})^0 (\frac{1}{6})^3 = 420 \left(\frac{1}{6}\right)^7
\]
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. What is the probability of getting:

- 1 one
- 0 threes
- 0 fives
- 1 two
- 2 fours
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7
\]