Continuous Joint Distributions
Chris Piech
CS109, Stanford University
Learning Goals

1. Know how to use a multinomial
2. Be able to calculate large bayes problems using a computer
3. Use a Joint CDF
Motivating Examples
Recall logs
Log Review

\[e^y = x \quad \text{log}(x) = y \]

Graph for \(\log(x) \)
Log Identities

\[\log(a \cdot b) = \log(a) + \log(b) \]

\[\log(a/b) = \log(a) - \log(b) \]

\[\log(a^n) = n \cdot \log(a) \]
Products become Sums!

\[\log(a \cdot b) = \log(a) + \log(b) \]

\[\log(\prod \limits_{i} a_{i}) = \sum \limits_{i} \log(a_{i}) \]

* Spoiler alert: This is important because the product of many small numbers gets hard for computers to represent.
Where we left off
Joint Probability Table

<table>
<thead>
<tr>
<th></th>
<th>Dining Hall</th>
<th>Eating Club</th>
<th>Cafe</th>
<th>Self-made</th>
<th>Marginal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Sophomore</td>
<td>0.51</td>
<td>0.15</td>
<td>0.03</td>
<td>0.03</td>
<td>0.69</td>
</tr>
<tr>
<td>Junior</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>Senior</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>5+</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Marginal Status</td>
<td>0.65</td>
<td>0.23</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Marginal Lunch Probability

- **Dining Hall**: 0.60
- **Eating Club**: 0.20
- **Cafe**: 0.10
- **Self-made**: 0.00

Marginal Year

- **Freshman**: 0.00
- **Sophomore**: 0.60
- **Junior**: 0.10
- **Senior**: 0.05
- **5+**: 0.05
Change in Marginal!

Fall 2017

Spring 2017

Marginal Year

Marginal Year
The Multinomial

• Multinomial distribution
 - n independent trials of experiment performed
 - Each trial results in one of m outcomes, with respective probabilities: p_1, p_2, \ldots, p_m where $\sum_{i=1}^{m} p_i = 1$
 - $X_i =$ number of trials with outcome i

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m}$$

Joint distribution

Multinomial # ways of ordering the successes

Probabilities of each ordering are equal and mutually exclusive

where

$$\sum_{i=1}^{m} c_i = n$$

and

$$\binom{n}{c_1, c_2, \ldots, c_m} = \frac{n!}{c_1! c_2! \cdots c_m!}$$
Hello Die Rolls, My Old Friends

6-sided die is rolled 7 times
 - Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3 = 420 \left(\frac{1}{6} \right)^7
\]

This is generalization of Binomial distribution
 - Binomial: each trial had 2 possible outcomes
 - Multinomial: each trial has \(m \) possible outcomes
• Ignoring order of words, what is probability of any given word you write in English?
 ▪ $P(\text{word} = \text{“the”}) > P(\text{word} = \text{“transatlantic”})$
 ▪ $P(\text{word} = \text{“Stanford”}) > P(\text{word} = \text{“Cal”})$
 ▪ Probability of each word is just multinomial distribution

• What about probability of those same words in someone else’s writing?
 ▪ $P(\text{word} = \text{“probability”} | \text{writer} = \text{you}) >$
 $P(\text{word} = \text{“probability”} | \text{writer} = \text{non-CS109 student})$
 ▪ After estimating $P(\text{word} | \text{writer})$ from known writings, use Bayes’ Theorem to determine $P(\text{writer} | \text{word})$ for new writings!
According to the Global Language Monitor there are 988,968 words in the English language used on the internet.
Example document:
“Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free.”

\[n = 18 \]

\[
P \left(\begin{array}{c}
\text{Viagra} = 2 \\
\text{Free} = 2 \\
\text{Risk} = 1 \\
\text{Credit-card: 2} \\
\vdots \\
\text{For} = 2
\end{array} \right) | \text{spam} = \frac{n!}{2!2! \ldots 2!} p_{\text{viagra}}^2 p_{\text{free}}^2 \cdots p_{\text{for}}^2
\]

It’s a Multinomial!

The probability of a word in spam email being viagra

Probability of seeing this document | spam
Who wrote the federalist papers?
• Authorship of “Federalist Papers”

 ▪ 85 essays advocating ratification of US constitution

 ▪ Written under pseudonym “Publius”
 o Really, Alexander Hamilton, James Madison and John Jay

 ▪ Who wrote which essays?
 o Analyzed probability of words in each essay versus word distributions from known writings of three authors
Let’s write a program!
Joint Expectation

\[E[X] = \sum_{x} x p(x) \]

- Expectation over a joint isn’t nicely defined because it is not clear how to compose the multiple variables:
 - Add them? Multiply them?

- Lemma: For a function \(g(X,Y) \) we can calculate the expectation of that function:

\[E[g(X,Y)] = \sum_{x,y} g(x,y)p(x,y) \]

- Recall, this also holds for single random variables:

\[E[g(X)] = \sum_{x} g(x)p(x) \]
Expected Values of Sums

Big deal lemma: first stated without proof

\[E[X + Y] = E[X] + E[Y] \]

Generalized:

\[E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] \]

Holds regardless of dependency between \(X_i \)'s
Let $g(X,Y) = [X + Y]$

$$E[X + Y] = E[g(X, Y)] = \sum_{x,y} g(x, y)p(x, y)$$

= $\sum_{x,y} [x + y]p(x, y)$

Break that sum into parts!

= $\sum_{x,y} xp(x, y) + \sum_{x,y} yp(x, y)$

Change the sum of (x,y) into separate sums

= $\sum_{x} x \sum_{y} p(x, y) + \sum_{y} y \sum_{x} p(x, y)$

That is the definition of marginal probability

= $\sum_{x} xp(x) + \sum_{y} yp(y)$

That is the definition of expectation

= $E[X] + E[Y]$
Continuous Random Variables

Joint Distributions
Continuous Joint Distribution
Riding the Marguerite

You are running to the bus stop. You don’t know exactly when the bus arrives. You arrive at 2:20pm.

What is $P(\text{wait} < 5 \text{ min})$?
Joint Dart Distribution

Dart Results \[P(\text{hit within } R \text{ pixels of center})? \]

What is the probability that a dart hits at (456.234231234122355, 532.12344123456)?
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?

Dart x location

Dart y location

0.005

0.12
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?
In the limit, as you break down continuous values into intestinally small buckets, you end up with multidimensional probability density.
A **joint probability density function** gives the relative likelihood of **more than one** continuous random variable **each** taking on a specific value.

$$\int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$
Joint Probability Density Function

\[
P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx
\]
Joint Probability Density Function

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx \]
Let X and Y be two continuous random variables
- where $0 \leq X \leq 1$ and $0 \leq Y \leq 2$

We want to integrate $g(x,y) = xy$ w.r.t. X and Y:
- First, do “innermost” integral (treat y as a constant):

$$\int_0^2 \int_0^1 xy \, dx \, dy = \int_0^2 \left(\int_0^1 xy \, dx \right) \, dy = \int_0^2 y \left[\frac{x^2}{2} \right]_0^1 \, dy = \int_0^2 y \frac{1}{2} \, dy$$
- Then, evaluate remaining (single) integral:

$$\int_0^2 y \frac{1}{2} \, dy = \left[\frac{y^2}{4} \right]_0^2 = 1 - 0 = 1$$
Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don’t care about.

\[p_X(a) = \sum_y p_{X,Y}(a, y) \]

\[f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) \, dy \]

\[f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx \]
Darts!

Dart PDF

X-Pixel Marginal

\[X \sim \mathcal{N}\left(\frac{900}{2}, \frac{900}{2}\right) \]

Y-Pixel Marginal

\[Y \sim \mathcal{N}\left(\frac{900}{3}, \frac{900}{5}\right) \]
Jointly Continuous

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx \]

• Cumulative Density Function (CDF):

\[F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y) \, dy \, dx \]

\[f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \partial b} F_{X,Y}(a,b) \]
Jointly CDF

$$F_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

- to 0 as $x \to -\infty$, $y \to -\infty$
- to 1 as $x \to +\infty$, $y \to +\infty$

plot by Academo
Jointly Continuous

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]

\[-F_{X,Y}(a_1, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]

\[-F_{X,Y}(a_1, b_2) \]

\[-F_{X,Y}(a_2, b_1) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]

\[-F_{X,Y}(a_1, b_2) \]

\[-F_{X,Y}(a_2, b_1) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]

\[-F_{X,Y}(a_1, b_2) \]

\[-F_{X,Y}(a_2, b_1) \]

\[+F_{X,Y}(a_1, b_1) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]

\[-F_{X,Y}(a_1, b_2) \]

\[-F_{X,Y}(a_2, b_1) \]

\[+F_{X,Y}(a_1, b_1) \]
Probability for Instagram!
In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

\[f_{X,Y}(x, y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}} \]

Joint CDF

\[F_{X,Y}(x, y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right) \]

Used to generate this weight matrix.
Gaussian Blur

Joint PDF

\[
 f_{X,Y}(x, y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}}
\]

Joint CDF

\[
 F_{X,Y}(x, y) = \Phi \left(\frac{x}{3} \right) \cdot \Phi \left(\frac{y}{3} \right)
\]

Each pixel is given a weight equal to the probability that \(X \) and \(Y \) are both within the pixel bounds. The center pixel covers the area where

\[-0.5 \leq x \leq 0.5 \text{ and } -0.5 \leq y \leq 0.5\]

What is the weight of the center pixel?

\[
P(-0.5 < X < 0.5, -0.5 < Y < 0.5) \\
= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5) \\
- P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5) \\
= \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{0.5}{3} \right) - 2 \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right) \\
+ \phi \left(\frac{-0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right) \\
= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206
\]