Lecture 16: Sampling

Lisa Yan
August 1, 2018
Announcements

Problem Set 4 pain poll

Lost?
- Come to office hours!
General problem solving strategies

Step 1

Intuition
- events, counting, examples

(if lost: is there another way to think about it?)

Step 2

Math toolbox

(once you have a good handle on what the problem *means* (step 1), then you can go to step 2)

Step 3

Sanity check!
- Valid probabilities?
- Reasonable expectations?
- Example checks out?
- All independence is justified?
- Assumptions not violated?

Step 4

Reflect

(if problem set: what was this question trying to test? What concepts did you use?)
Summary of last time

Conditional expectation: \[E_Y [E_X [X|Y]] = E_X [X] \]

- Expectations of complex functions, like \(E[\sum_{i=1}^X Y] \)
- Analyze recursive code!

Quicksort:

- While recursive, can be solved as an expectation of a sum of indicator random variables.
- When dealing with a sum of non-trivial indicator probabilities,
 \[\sum_{x=k}^n \frac{1}{ax+b} \approx \int_{x=k}^n \frac{1}{ax+b} \, dx \]

(QuickSort is beyond the scope of your HW, but you should understand it)
Where are we going with all of this?

As engineers, we want to:

1. Model things that can be random.
2. Find average values of situations that let us make good decisions.

We perform multiple experiments to help us with engineering.

Counts and averages are both sums of RVs.

 Weeks 4 and 5:

Learning how to model multiple RVs

This week (week 6):

• Finding expectation of complex situations
• Defining sampling and using existing data
• Mathematical bounds w.r.t modeling the average

Week 7: bringing it all together

• Sampling + average = Central Limit Theorem
• Samples + modeling = finding the best model parameters given data
Goals for today

Sampling
- Sample statistics
- Bootstrapping: Estimating distribution from samples
- Statistical significance and p-values

Probability

Applications
Common types of experiments

Simulation:
- Create model of system
- Many experiment simulations
- Report % accuracy

Machine Learning:
- Learn model of system
- Do stuff with model

Social science:
- Pre-test humans (control)
- Perform one experiment
- Post-test humans

Estimate model
- (DNA simulations, network traffic, etc.)

Single experiment zero model
- (image classification, robot operation)
- (treatment effect, election polling, etc.)

Get statistics
Q: Rate Stanford from 1 to 10.

Population:
- Each person’s X_i attribute i.i.d. as F, where
 $$E[X_i] = \mu \text{ and } \text{Var}(X_i) = \sigma^2$$

WTF: μ and σ^2 of F
(Impossible to ask all people)

Sampling: choose n people
- Compute averages to estimate μ and σ^2
Averaging example

\[X_1 = 37 \]
\[X_2 = 53 \]
\[X_3 = 34 \]
\[X_4 = 70 \]
\[X_5 = 59 \]
\[X_6 = 29 \]
\[X_7 = 48 \]
\[X_8 = 81 \]
(sample with sample size 8)

\[\bar{X} = \frac{1}{8} \sum_{i=1}^{8} X_i \approx 51.4 \]

\[\mu = E[X_i] \]
\[\sigma = \sqrt{\text{Var}(X_i)} \]
Sample mean

Consider n i.i.d random variables X_1, X_2, \ldots, X_n, where

- X_i have distribution F with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$

We define X_1, X_2, \ldots, X_n as a sample from distribution F if n is our sample size.

We define the sample mean as:

$$\bar{X} = \frac{1}{n} (X_1 + X_2 + \cdots + X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- This is a RV!! $\bar{X} = g(X_1, X_2, \ldots, X_n)$
- Depending on our sample, sample mean can differ
- We want sample mean to be unbiased, i.e., $E[\bar{X}] = \mu$

(goal: μ and σ^2 of F)

(if we sampled many times, the average of sample means should be our target μ)
The unbiased sample mean

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

Goal: \(\mu \) and \(\sigma^2 \) of F

Strategy to get \(\mu \):

1. Experiment many times (get \(k \) different samples of size \(n \))
2. Take sample means of all different \(k \) samples
3. Average \(k \) sample means

Prove that this strategy will work (i.e., that \(E[\bar{X}] = \mu \)).

Proof:

\[
E[\bar{X}] = E \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] \quad \text{(definition of sample mean)}
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} E[X_i] \quad \text{(linearity of expectation)}
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} (n\mu) = \mu \quad \text{\((E[X_i] = \mu \) as defined)}
\]
Sample mean

Consider n i.i.d random variables $X_1, X_2, ... X_n$, where X_i have distribution F with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$

Sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

- Mean (unbiased): $E[\bar{X}] = \mu$
- Variance: $\text{Var}(\bar{X}) = \frac{\sigma^2}{n}$

Proof of variance:
$$\text{Var}(\bar{X}) = \text{Var}\left(\sum_{i=1}^{n} \frac{X_i}{n}\right) = \left(\frac{1}{n}\right)^2 \text{Var}\left(\sum_{i=1}^{n} X_i\right) = \left(\frac{1}{n}\right)^2 \sum_{i=1}^{n} \text{Var}(X_i)$$

$(\text{Var}(X) = a^2\text{Var}(X))$

$(X_1, X_2, ... X_n$ independent)$

$$= \left(\frac{1}{n}\right)^2 \sum_{i=1}^{n} \sigma^2 = \left(\frac{1}{n}\right)^2 n\sigma^2 = \frac{\sigma^2}{n}$
Sample variance

Consider n i.i.d random variables X_1, X_2, \ldots, X_n, where

- X_i have distribution F with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$
- We define X_1, X_2, \ldots, X_n as a sample from distribution F

def sample variance:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Note: $X_i - \bar{X}$ is sample deviation for $i = 1, \ldots, n$

Sample variance as defined is an *unbiased* estimator of the population variance (σ^2), i.e., $E[S^2] = \sigma^2$
(proof in lecture notes/next slide)
The unbiased sample variance

Prove that $E[S^2] = \sigma^2$ (where $E[X_i] = \mu, \text{Var}(X_i) = \sigma^2$).

$$E[S^2] = E \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \right] \Rightarrow (n-1)E[S^2] = \sum_{i=1}^{n} E[(X_i - \bar{X})^2]$$

$$(n-1)E[S^2] = E \left[\sum_{i=1}^{n} ((X_i-\mu) + (\mu - \bar{X}))^2 \right]$$

$$= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\mu - \bar{X})^2 + 2 \sum_{i=1}^{n} (X_i-\mu)(\mu - \bar{X}) \right]$$

$$= \sum_{i=1}^{n} E[(X_i - \mu)^2] - n \sum_{i=1}^{n} E[(\mu - \bar{X})^2]$$

$$= n\sigma^2 - n\text{Var}(\bar{X})$$

$$(n - 1)E[S^2] = n\sigma^2 - n \frac{\sigma^2}{n}$$

$$= \sigma^2(n-1)$$

$\therefore E[S^2] = \sigma^2$
A key difference

Variance of sample mean \bar{X}:

$$\text{Var}(\bar{X}) = \frac{\sigma^2}{n}$$

- A single number
- Not computable from sample
- Shrinks with # sample size n
- Measures deviation from population mean ($E[\bar{X}] = \mu$)

def standard error – approximate variance of sample mean, $SE = \sqrt{\frac{S^2}{n}}$

Sample variance, S^2:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- A random variable
- Computable from sample
- In expectation is the population variance
Summary so far

→ Population mean μ and population variance σ^2

→ How do I approximate my population statistics?
Sample mean \bar{X} and sample variance S^2

→ How close is my approximation of the population mean?
Standard error $SE = \frac{S^2}{\sqrt{n}}$
(approximation of sample mean’s standard deviation $Var(\bar{X}) = \frac{\sigma^2}{n}$
i.e., deviation from population mean)
Python demo

https://github.com/yanlisa/bootstrap_demo
Break

Attendance: tinyurl.com/cs109summer2018
Sample statistics

Population statistic

(Each person $X_i \sim F$)

- Population mean μ
- Population variance σ^2
- Probabilities
- ...and more!

Sample statistic

-Sample mean \bar{X}
-Sample variance S^2
-Counts in sample
-Standard error
-...and more!
So far...

We want to compute **statistics** about our population...

Want to find (WTF):

P (average distance Lisa can throw candy is b/t 2.1 and 2.5 meters)

P (this quarter’s midterm average was really different from previous quarter’s)

Sample:

2.2m, 1m, 2m, 7m, 0.05m, …, (on a particular day)

This quarter: 82.5%, 46.3%, …

Last quarter: 73.2%, 90.1%, …

General ver.:

estimate of the population mean

probability of this difference in sample means

...but we only have our single sample \((X_1 = x_1, X_2 = x_2, \ldots X_n = x_n) \) to work with.
So far...

If we have many statistics from many samples:

- Average sample statistics from all = our actual population statistic. (if unbiased)

But what if we only have one experiment?

- Find the probability of observing the sample statistic that we got

But we don’t know the underlying distribution F!

Solution:

Bootstrapping
Bootstrapping

Finding the distribution of our population

Legend:
- The only PMF we have (the histogram of our sample)
- possible PMFs (infinitely many)

Intuitions:
1. We only know what we know (we only have the samples that we have)
2. We can simulate the experiment using technology! (aka computers)
3. Simulation lets us compute a distribution over our statistic over many, many, many, many experiments
Bootstrapping

If we have an unknown distribution F:

You can estimate the PMF of the underlying distribution F using your samples.

\[F \approx \hat{F} \]

(the underlying distribution) \hspace{1cm} (the sample distribution)
Bradley Efron

Bradley Efron is an American statistician (1938–)

Professor at Stanford (since 1964) working on astrophysics and biostatistics

Still teaches classes (STATS 305B)

Efron’s dice: 4 dice A,B,C,D such that

\[P(A > B) = P(B > C) = P(C > D) = P(D > A) = \frac{2}{3} \]
The Bootstrap algorithm

“aka simulate experiment a bunch of times”

def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample)
 results.append(stat)
 return results

(In this class, just use histogram of sample)
The Bootstrap algorithm

“aka simulate experiment a bunch of times”

def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample)
 results.append(stat)
 return results

(In this class, just use histogram of sample)
(# times to perform experiment)
The Bootstrap algorithm

“aka simulate experiment a bunch of times”

def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample)
 results.append(stat)
 return results

(In this class, just use histogram of sample)

(# times to perform experiment)

(get a sample)
The Bootstrap algorithm

“aka simulate experiment a bunch of times”

def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample)
 results.append(stat)
 return results

(In this class, just use histogram of sample)

(# times to perform experiment)
 (get a sample)
 (sample mean, etc.)
The Bootstrap algorithm

“aka simulate experiment a bunch of times”

def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample)
 results.append(stat)
 return results

(In this class, just use histogram of sample)

(# times to perform experiment)

(get a sample)

(sample mean, etc.)

(returns distribution of your statistic)
So far...

We want to compute statistics about our population...

Want to find (WTF):

\[P \left(\text{average distance Lisa can throw candy is b/t 2.1 and 2.5 meters} \right) \]

Sample:

\[2.2m, 1m, 2m, 7m, 0.05m, \ldots \]

(on a particular day)

General ver.:

estimate of the population mean

(specifically, a confidence interval about where we think the population mean may lie)

...but we only have our single sample \((X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) \) to work with.
Understanding the bootstrap

Your real sample (say, candy throws on Monday 7/30)

- N candy throw distances (2.2m, 1m, 2m, 7m, 0.05m, ...)
- Sample mean: 2.3 m

Want to see: P(population mean is between 2.1 to 2.5 m)

1. Make your PMF
 \[P(X = x) = \frac{\text{# points} == x}{N} \]

2. Repeat 10,000 times:
 a. Draw N candy distances with replacement
 b. Compute sample mean and save

3. Now you have a sample mean distribution!

4. Find # sample means between 2.1 and 2.5 in distribution
def bootstrap(sample):
 pmf = histogram_count(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample) # sample mean
 results.append(stat)
 return results # distribution of sample means
Understanding the bootstrap

```python
def bootstrap(sample):
    pmf = histogram_count(sample)
    results = []
    for i in range(10000):
        resample = pmf.sample(size=len(sample))
        stat = compute_stat(resample)  # sample mean
        results.append(stat)
    return results  # distribution of sample means
```

results = [1.9]
def bootstrap(sample):
 pmf = histogram_count(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample) # sample mean
 results.append(stat)
 return results # distribution of sample means

results = [1.9, 2.8]
def bootstrap(sample):
 pmf = histogram_count(sample)
 results = []
 for i in range(10000):
 resample = pmf.sample(size=len(sample))
 stat = compute_stat(resample) # sample mean
 results.append(stat)
 return results # distribution of sample means
Understanding the bootstrap

Sample mean value

Probability of sample mean of size 200

means = [1.9, 2.8, 3.7, 0.9, 1.4, 2.3, 2.6, 2.8, ...]

How often will the population mean be in the range 2.1 to 2.5?

confidence interval of X%: X% of the time, 2.1 ≤ pop. mean ≤ 2.5
What is the confidence interval associated with the belief that the average Water Pokemon speed stat is within ±1 bootstrapped standard error of the sample mean?

https://github.com/yanlisa/bootstrap_demo

Interpret: What are the number of times where $| \text{pop. mean} - \text{sample mean} | < 1 \text{ boot SE}$?

Interpret: How reliable is our estimate of the population mean?
Bootstrap

1. Assume your sample distribution is population distribution.
2. Get many samples and calculate some statistic
3. Get a statistic distribution
4. Report probabilities on your statistic distribution

Use cases:
1. **Confidence interval** of population mean (we just did this)
2. Whether two samples are significantly different (next)
3. Many more... (in your future)
We want to compute statistics about our population...

Want to find (WTF):

P (this quarter’s midterm average was really different from previous quarter’s)

Sample:

This quarter:
82.5%, 46.3%, ...

Last quarter:
73.2%, 90.1%, ...

General ver.: probability of this difference in sample means

(specifically, a p-value about how unlikely we think this difference arises due to chance)

...but we only have our single sample \((X_1 = x_1, X_2 = x_2, \ldots X_n = x_n)\) to work with.
Statistical significance

Sampling by nature will have different fluctuations.

def statistical significance of a result – whether this result would be very unlikely to happen due to chance.

Want to see: Is this statistic that we obtained significant?

Interpretation: What is the probability of seeing this statistic if the only differences between different observations are due to chance alone?
p-values

Alternate hypothesis: There is a significant difference in sample means of groups A and B, tosses of a coin, etc. **(our goal)**

Null hypothesis, H_0: coin is fair, groups are from same populations, etc.

p-value: What is $P(\text{getting a result} \mid H_0)$? **(what we assume)**

- Small $p (< .01)$: likelihood that observation was due to random sample error is low \rightarrow statistically significant **(reject null)**
- Any other p: Cannot say anything about significance of observation **(do not reject null)**

Note that p-value is not an error rate! $P(\text{observation} \mid H^0) \neq P(H^0)$
Bootstrap for p-values

How often will we get a difference greater than the observed difference, between sample 2 and sample 1?

def bootstrap_p(sample1, sample2):
 observed_diff = np.abs(np.mean(sample1) - np.mean(sample2))
 null_sample = sample1 + sample2
 null_pmf = histogram_count(null_sample)
 count = 0
 for i in range(10000):
 resample1 = null_pmf.sample(size=len(sample1))
 resample2 = null_pmf.sample(size=len(sample2))
 resample_diff = np.abs(np.mean(resample1) - np.mean(resample2))
 if resample_diff >= observed_diff:
 count += 1
 return count/10000 # p value
Another bootstrap example

Two samples:

• N exam scores from this quarter, sample mean $\bar{X} = x_1$
• M exam scores from last quarter, sample mean $\bar{X} = x_2$

WTF: whether these sample means were significant different

Interpretation for bootstrap: find distribution of sample mean differences, then find probability we observe > the actual $|x_2 - x_1|$

1. Make your PMF

$$ P(X = x) = \frac{(# \text{ last quarter } == x) + (# \text{ this quarter } == x)}{N + M} $$

2. Repeat 10,000 times:
 a. Draw two groups of size N and M
 b. Compute difference in sample means and check if difference > $|x_2 - x_1|$

3. Compute p value

$$ P(\text{difference} > |x_2 - x_1| | \text{same distribution}) $$

4. If p < 0.01, reject null hypothesis \Rightarrow quarters significantly different
Python demo

1. Do Water Pokemon and Normal Pokemon have significantly different speed stats?

2. Are Beta(3,6) and Beta(6,3) significantly different?

(demo not posted; complete bootstrap function for HW)