17: Beta

Lisa Yan
October 26, 2019
Conditional expectation

The conditional expectation of X (discrete) given $Y = y$ is

$$E[X|Y = y] = \sum_x xP(X = x|Y = y) = \sum_x xP_{X|Y}(x|y)$$

Let W, Y be two RVs for the outcomes of two independent dice rolls, respectively. Let $X = W + Y$.

$$E[X|Y = y] = E[W + Y|Y = y] = y + E[W|Y = y]$$

$$= y + \sum_w wP(W = w|Y = y) = y + \sum_w wP(W = w)$$

$$= y + E[W] = y + 3.5$$

$E[X|Y]$ is a random variable. It is a function of Y.
Properties of conditional expectation

1. LOTUS:

\[E[g(X)|Y = y] = \sum_x g(x)p_{X|Y}(x|y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y) \, dx \]

2. Linearity of conditional expectation:

\[E\left[\sum_{i=1}^{n} X_i \mid Y = y\right] = \sum_{i=1}^{n} E[X_i \mid Y = y] \]

3. Law of total expectation:

\[E[X] = E[E[X\mid Y]] \]
Proof of Law of Total Expectation

\[E[E[X|Y]] = E[g(Y)] = \sum_y P(Y = y)E[X|Y = y] \]

\[= \sum_y P(Y = y) \sum_x xP(X = x|Y = y) \]

\[= \sum_x \left(\sum_y xP(X = x|Y = y)P(Y = y) \right) = \sum_y \left(\sum_x xP(X = x, Y = y) \right) \]

\[= \sum_x \sum_y xP(X = x, Y = y) = \sum_x x \sum_y P(X = x, Y = y) \]

\[= \sum_x xP(X = x) = E[X] \]

\[(g(Y) = E[X|Y]) \]

(Def of conditional expectation)

(Chain rule)

(Switch order of summations)

(Marginalization)
Properties

1. LOTUS:

\[E[g(X)|Y = y] = \sum_{x} g(x)p_{X|Y}(x|y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x)f_{X|Y}(x|y) \, dx \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i \mid Y = y \right] = \sum_{i=1}^{n} E[X_i \mid Y = y] \]

3. Law of total expectation:

\[E[X] = E[E[X|Y]] \]

For any RV \(X \) and discrete RV \(Y \),

\[E[X] = \sum_{y} E[X|Y = y]P(Y = y) \]

Lisa Yan, CS109, 2019
Analyzing recursive code

Let $Y = \text{return value of recurse()}$. What is $E[Y]$?

When $X = 1$, return 3.

$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$

If Y discrete
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

When $X = 2$, return $5 +$ a future return value of `recurse()`.

What is $E[Y|X = 2]$?

B. $E[5 + Y] = 5 + E[Y]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let \(Y \) = return value of `recurse()`. What is \(E[Y] \)?

\[
\]

When \(X = 2 \), return \(5 + \) a future return value of `recurse()`.

What is \(E[Y|X = 2] \)?

A. \(E[5] + Y \)
B. \(E[5 + Y] = 5 + E[Y] \)

If \(Y \) discrete

\[
E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)
\]
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

When $X = 3$, return $7 + a$ future return value of `recurse()`.

$E[Y|X = 3] = 7 + E[Y]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1):  return 3
    elif (x == 2): return (5 + recurse())
    else:       return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse}()$. What is $E[Y]$?

$$E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3)$$

$$E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]$$

$$E[Y] = 15$$
Law of Total Expectation, a summary

Conditional expectation of X given Y:

- $E[X|Y]$ is a function of Y.
- To evaluate at $Y = y$, $E[X|Y = y] = \sum_x xP(X = x|Y = y)$

Law of total expectation:

$$E[X] = E[E[X|Y]]$$

- Helps us analyze recursive code.
- Pro tip: use this more in CS161
Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution
Bayes’ on the waves

\[
P(\text{I'm near the ocean | I picked up a seashell}) = \frac{P(\text{I picked up a seashell | I'm near the ocean}) P(\text{I'm near the ocean})}{P(\text{I picked up a seashell})}
\]

Statistically speaking, if you pick up a seashell and don’t hold it to your ear, you can probably hear the ocean.
Let’s play a game

Roll a die twice:
• If either time you roll a 6, I win.
• Otherwise you win.

Let $W =$ the event where you win. What is $P(W)$?

If the die is fair:

$$P(W) = \left(\frac{5}{6}\right)^2$$

What if the probabilities of the die are unknown?

(demo)
Today’s plan

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.
Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution
Conditional distributions

For discrete RVs X and Y, the conditional PMF of X given Y is

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Bayes’ Theorem:

$$p_{Y|X}(y|x) = \frac{p_{X|Y}(x|y)p_Y(y)}{p_X(x)}$$

For continuous RVs X and Y, the conditional PDF of X given Y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Bayes’ Theorem:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}$$

Conditioning with a continuous RV feels weird at first, but then it gets good.
Mixing discrete and continuous

Let \(X \) be a \textbf{continuous} random variable, and \(N \) be a \textbf{discrete} random variable.

The \textbf{conditional PDF} of \(X \) given \(N \) is: \(f_{X|N}(x|n) \)

The \textbf{conditional PMF} of \(N \) given \(X \) is: \(p_{N|X}(n|x) \)
Mixing discrete and continuous

Let X be a **continuous** random variable for person’s height (inches), and N be a **discrete** random variable for person’s age (10, 13, 15, or 20).

Matching:
A. $f_{X|N}(x|n)$, conditional PDF of X given N
B. $p_{N|X}(n|x)$, conditional PMF of N given X

![Graphs showing the distributions of X and N given different values of X.](image)
Mixing discrete and continuous

Let X be a **continuous** random variable for person’s height (inches), and N be a **discrete** random variable for person’s age (10, 13, 15, or 20).

Matching: A. $f_{X|N}(x|n)$, conditional PDF of X given N

B. $p_{N|X}(n|x)$, conditional PMF of N given X
Mixing discrete and continuous

Let X be a **continuous** random variable, and N be a **discrete** random variable.

The **conditional PDF** of X given N is:

$$f_{X|N}(x|n)$$

The **conditional PMF** of N given X is:

$$p_{N|X}(n|x)$$

Bayes’ Theorem:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Intuition:

$$P(X = x|N = n) = \frac{P(N = n|X = x)P(X = x)}{P(N = n)}$$

$$f_{X|N}(x|n)\epsilon_X = \frac{p_{N|X}(n|x) \cdot f_X(x)\epsilon_X}{p_N(n)}$$
All your Bayes are belong to us

Let X, Y be **continuous** and M, N be **discrete** random variables.

OG Bayes:

$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}$$

Mix Bayes #1:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Mix Bayes #2:

$$p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$$

All continuous:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$
Mixing discrete and continuous random variables, combined with Bayes’ Theorem, allows us to reason about probabilities as random variables.
A new definition of probability

Flip a coin \(n + m \) times, comes up with \(n \) heads. We don’t know the probability \(X \) that the coin comes up with heads.

Frequentist

\[
X = \lim_{n+m\to\infty} \frac{n}{n + m} \approx \frac{n}{n + m}
\]

Bayesian

\(X \) is a random variable. \(X \)’s support: (0, 1)
Break for jokes/announcements
Announcements

Midterm exam
It’s done! (refrain from posting to Piazza until Thursday)
Grades: Friday 11/1
Solutions: Friday 11/1

Concept checks
Week 5’s: Today (10/31) 11:59pm

Problem Set 4
Due: Wednesday 11/6
Covers: Up to Law of Total Expectation

Late day reminder: No late days permitted past last day of the quarter, 12/7
Flip a coin with unknown probability

Flip a coin $n + m$ times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$?

What are the distributions of the following?

1. X
2. $N|X$
3. $X|N$

- A. $\text{Uni}(0,1)$
- B. $\text{Bin}(n + m, x)$
- C. Use Bayes’
- D. Other
- E. Don’t know
Flip a coin with unknown probability

Flip a coin \(n + m \) times, comes up with \(n \) heads.

- Before our experiment, \(X \) (the probability that the coin comes up heads) can be any probability.
- Let \(N = \) number of heads.
- Given \(X = x \), coin flips are independent.

What is our updated belief of \(X \) after we observe \(N = n \)?

What are the distributions of the following?

1. \(X \)
 Bayesian prior \(X \sim \text{Uni}(0,1) \)

2. \(N | X \)
 Likelihood \(N | X \sim \text{Bin}(n + m, x) \)

3. \(X | N \)
 Bayesian posterior. Use Bayes’
Flip a coin with unknown probability

Flip a coin $n + m$ times, comes up with n heads.

- Before our experiment, X (the probability that the coin comes up heads) can be any probability.
- Let $N =$ number of heads.
- Given $X = x$, coin flips are independent.

What is our updated belief of X after we observe $N = n$?

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)} = \frac{(n + m)x^n(1 - x)^m}{p_N(n)}$$

$$= \frac{(n + m)}{m} x^n(1 - x)^m = \frac{1}{c} x^n(1 - x)^m,$$ where $c = \int_0^1 x^n(1 - x)^m dx$
Flip a coin with unknown probability

• Start with a $X \sim \text{Uni}(0,1)$ over probability
• Observe n successes and m failures
• Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^n (1 - x)^m,$$

where $c = \int_0^1 x^n (1 - x)^m \, dx$

Suppose our experiment is 8 flips of a coin. We observe:
• $n = 7$ heads (successes)
• $m = 1$ tail (failure)

What is our posterior belief, $X|N$?
Flip a coin with unknown probability

- Start with a $X \sim \text{Uni}(0,1)$ over probability
- Observe $n = 7$ successes and $m = 1$ failures
- Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1$$

where $c = \int_0^1 x^7 (1 - x)^1 dx$
Today’s plan

Law of Total Expectation

Mixing discrete and continuous random variables

Beta distribution
Beta random variable

def An Beta random variable X is defined as follows:

$$X \sim \text{Beta}(a, b)$$

$a > 0, b > 0$

Support of X: $(0, 1)$

PDF

$$f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} \, dx$, normalizing constant

Expectation $E[X] = \frac{a}{a + b}$

Variance $\text{Var}(X) = \frac{ab}{(a + b)^2 (a + b + 1)}$

Beta is a distribution for probabilities.
Beta is a distribution of probabilities

\[X \sim \text{Beta}(a, b) \]

\(a > 0, b > 0 \)

Support of \(X \): (0, 1)

PDF

\[f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1} \]

where \(B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx \), normalizing constant
CS109 focus: Beta where a, b both positive integers

Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)
CS109 focus: Beta where a, b both positive integers

Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)
CS109 focus: Beta where a, b both positive integers

Match PDF to distribution:

Beta parameters a, b could come from an experiment:

\[a = \text{"successes"} + 1 \]
\[b = \text{"failures"} + 1 \]
Back to flipping coins

- Start with a $X \sim \text{Uni}(0,1)$ over probability
- Observe $n = 7$ successes and $m = 1$ failures
- Your new belief about the probability of X is:

$$f_{X|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1,$$
where $c = \int_0^1 x^7 (1 - x)^1 \, dx$

Posterior belief, $X|N$:
- Beta($a = 8, b = 2$)
 $$f_{X|N}(x|n) = \frac{1}{c} x^{8-1} (1 - x)^{2-1}$$
- Beta($a = n + 1, b = m + 1$)
Understanding Beta

• Start with a $X \sim \text{Uni}(0,1)$ over probability
• Observe n successes and m failures
• Your new belief about the probability of X is:

$$X|N \sim \text{Beta}(a = n + 1, b = m + 1)$$
Understanding Beta

• Start with a $X \sim \text{Uni}(0,1)$ over probability
• Observe n successes and m failures
• Your new belief about the probability of X is:

$$X|N \sim \text{Beta}(a = n + 1, b = m + 1)$$

Check this out:

Beta($a = 1, b = 1$) has PDF:

$$f(x) = \frac{1}{B(a, b)} x^{a-1}(1 - x)^{b-1} = \frac{1}{B(a, b)} x^0 (1 - x)^0 = \frac{1}{\int_0^1 1dx}$$

where $0 < x < 1$

So our prior $X \sim \text{Beta}(a = 1, b = 1)$!
If the prior is a Beta...

Let X be our random variable for probability of success and N

- If our **prior belief** about X is beta: $X \sim \text{Beta}(a, b)$

 ...and if we observe n successes and m failures: $N | X \sim \text{Bin}(n + m, x)$

- ...then our **posterior belief** about X is also beta: $X | N \sim \text{Beta}(a + n, b + m)$

This is the main takeaway of today.
If the prior is a Beta...

Let X be our random variable for probability of success and N

- If our **prior belief** about X is beta:
 - ...and if we observe n successes and m failures:
 - ...then our **posterior belief** about X is also beta.

Proof:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)} = \frac{\binom{n+m}{m} x^n (1-x)^m \cdot \frac{1}{B(a,b)} x^{a-1}(1-x)^{b-1}}{p_N(n)}$$

$$= C \cdot x^n (1-x)^m \cdot x^{a-1}(1-x)^{b-1}$$

$$= C \cdot x^{n+a-1}(1-x)^{m+b-1}$$

$X \sim \text{Beta}(a,b)$

$N|X \sim \text{Bin}(n + m, x)$

$X|N \sim \text{Beta}(a + n, b + m)$
If the prior is a Beta...

Let X be our random variable for probability of success and N

- If our **prior belief** about X is beta: $X \sim \text{Beta}(a, b)$
- ...and if we observe n successes and m failures: $N|X \sim \text{Bin}(n + m, x)$
- ...then our **posterior belief** about X is also beta. $X|N \sim \text{Beta}(a + n, b + m)$

Beta is a **conjugate** distribution.

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add number of “heads” and “tails” seen to Beta parameter.
If the prior is a Beta...

Let X be our random variable for probability of success and N

- If our **prior belief** about X is beta: $X \sim \text{Beta}(a, b)$

...and if we observe n successes and m failures: $N \mid X \sim \text{Bin}(n + m, x)$

- ...then our **posterior belief** about X is also beta. $X \mid N \sim \text{Beta}(a + n, b + m)$

You can set the prior to reflect how biased you think the coin is apriori.

- This is a subjective probability!
- $X \sim \text{Beta}(a, b)$: have seen $(a + b - 2)$ imaginary trials, where $(a - 1)$ are heads, $(b - 1)$ tails
- Then $\text{Beta}(1, 1) = \text{Uni}(0, 1)$ means we haven’t seen any imaginary trials
The enchanted die

Let X be the probability of rolling a 6 on Lisa’s die.

- Prior: Imagine 5 die rolls where only 6 showed up
- Observation: roll it a few times...

What is the updated distribution of X after our observation?

Check out the demo!
Medicinal Beta

• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Frequentist

Let p be the probability your drug works.

$p \approx \frac{14}{20} = 0.7$

Bayesian

A frequentist view will not incorporate prior/expert belief about probability.
Medicinal Beta

- Before being tested, a medicine is believed to “work” 80% of the time.
- The medicine is tried on 20 patients.
- It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Frequentist

Let p be the probability your drug works.

$$p \approx \frac{14}{20} = 0.7$$

Bayesian

Let X be the probability your drug works.

X is a random variable.
Medicinal Beta

- Before being tested, a medicine is believed to “work” 80% of the time.
- The medicine is tried on 20 patients.
- It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

(Bayesian interpretation)

What is the prior distribution of X? (select all that apply)

A. $X \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
B. $X \sim \text{Beta}(81, 101)$
C. $X \sim \text{Beta}(80, 20)$
D. $X \sim \text{Beta}(81, 21)$
E. $X \sim \text{Beta}(5, 2)$
Medicinal Beta

• Before being tested, a medicine is believed to “work” 80% of the time.
• The medicine is tried on 20 patients.
• It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

What is the prior distribution of X? (select all that apply)

A. $X \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
B. $X \sim \text{Beta}(81, 101)$
C. $X \sim \text{Beta}(80, 20)$
D. $X \sim \text{Beta}(81, 21)$ Interpretation: 80 successes / 100 imaginary trials
E. $X \sim \text{Beta}(5, 2)$ Interpretation: 4 successes / 5 imaginary trials

(Bayesian interpretation)
Medicinal Beta

- Before being tested, a medicine is believed to “work” 80% of the time.
- The medicine is tried on 20 patients.
- It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: \(X \sim \text{Beta}(a = 5, b = 2) \)

Posterior: \(X \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \)

\(\sim \text{Beta}(a = 19, b = 8) \)
Medicinal Beta

- Before being tested, a medicine is believed to “work” 80% of the time.
- The medicine is tried on 20 patients.
- It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: $X \sim \text{Beta}(a = 5, b = 2)$
Posterior: $X \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \sim \text{Beta}(a = 19, b = 8)$

What do you report to pharmacists?

A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing
Before being tested, a medicine is believed to “work” 80% of the time.

The medicine is tried on 20 patients.

It “works” for 14, “doesn’t work” for 6.

What is your new belief that the drug “works”?

Prior: \(X \sim \text{Beta}(a = 5, b = 2) \)

Posterior: \(X \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \approx \text{Beta}(a = 19, b = 8) \)

What do you report to pharmacists?

(A.) Expectation of posterior

\[
E[X] = \frac{a}{a + b} = \frac{19}{19 + 8} \approx 0.70
\]

(B.) Mode of posterior

\[
\text{mode}(X) = \frac{a - 1}{a + b - 2} = \frac{18}{18 + 7} \approx 0.72
\]
Food for thought

In this lecture:

If we don’t know the parameter p, Bayesian statisticians will:

- Treat the parameter as a random variable X with a Beta distribution
- Perform an experiment
- Based on experiment outcomes, update the distribution of X

$Y \sim \text{Ber}(p)$

Food for thought:

Any parameter for a “parameterized” random variable can be thought of as a random variable.

$Y \sim \mathcal{N}(\mu, \sigma^2)$