Sampling and Bootstrapping
Chris Piech
CS109, Stanford University
You want to know the true mean and variance of happiness in Bhutan

- But you can’t ask everyone.
- Randomly sample 200 people.
- Your data looks like this:

\[\text{Happiness} = \{72, 85, 79, 91, 68, \ldots , 71\} \]

- The mean of all of those numbers is 83. Is that the true average happiness of Bhutanese people?
Population
Collect one (or more) numbers from each person
• Consider n random variables X_1, X_2, \ldots, X_n
 ▪ X_i are all independently and identically distributed (I.I.D.)
 ▪ Have same distribution function F and $E[X_i] = \mu$
 ▪ We call sequence of X_i a **sample** from distribution F
We call this the underlying distribution
We call this the underlying distribution

IID Samples = [20]
We call this the underlying distribution.

IID Samples = [20, 38]
We call this the underlying distribution

IID Samples = [20, 38, 32]
We call this the underlying distribution

IID Samples = [20, 38, 32, ..., 38]
Sample Mean

- Consider \(n \) random variables \(X_1, X_2, \ldots, X_n \)
 - \(X_i \) are all independently and identically distributed (I.I.D.)
 - Have same distribution function \(F \) and \(E[X_i] = \mu \)
 - We call sequence of \(X_i \) a sample from distribution \(F \)

- Sample mean: \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)

- Compute \(E[\bar{X}] \)
 \[
 E[\bar{X}] = E\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} E\left[\sum_{i=1}^{n} X_i \right]
 \]
 \[
 = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} n \mu = \mu
 \]

- \(\bar{X} \) is “unbiased” estimate of \(\mu \) \((E[\bar{X}] = \mu) \)
Sample Mean

Average Happiness

Average Happiness

Bhutan

83

0
Sample Mean:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Size of the sample

ith sample
• Consider n I.I.D. random variables X_1, X_2, \ldots, X_n
 - X_i have distribution F with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$
 - We call sequence of X_i a **sample** from distribution F
 - Recall sample mean: $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ where $E[\bar{X}] = \mu$
 - Sample deviation: $\bar{X} - X_i$ for $i = 1, 2, \ldots, n$
 - Sample variance: $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}$

• What is $E[S^2]$?
• $E[S^2] = \sigma^2$
• We say S^2 is “unbiased estimate” of σ^2
I Believe What I See
Intuition that $\mathbb{E}[S^2] = \sigma^2$

Population variance

$$\sigma^2 = \sum_{i=1}^{N} \frac{(X_i - \mu)^2}{N}$$

This is the actual mean

Unbiased sample variance

$$S^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n-1}$$

This is the sample mean
Intuition that $E[S^2] = \sigma^2$

Population variance

$$\sigma^2 = \sum_{i=1}^{N} \frac{(X_i - \mu)^2}{N}$$

This is the actual mean

Unbiased sample variance

$$S^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n-1}$$

This is the sample mean

The variance of the sample mean? Related to population variance
Proof that $E[S^2] = \sigma^2$ (just for reference)

\[
E[S^2] = E \left[\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \right] \Rightarrow (n-1)E[S^2] = E \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right]
\]

\[
(n-1)E[S^2] = E \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = E \left[\sum_{i=1}^{n} ((X_i - \mu) + (\mu - \bar{X}))^2 \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\mu - \bar{X})^2 + 2\sum_{i=1}^{n} (X_i - \mu)(\mu - \bar{X}) \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\mu - \bar{X})^2 + 2(\mu - \bar{X})\sum_{i=1}^{n} (X_i - \mu) \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\mu - \bar{X})^2 + 2(\mu - \bar{X})n(\bar{X} - \mu) \right]
\]

\[
= E \left[\sum_{i=1}^{n} (X_i - \mu)^2 - n(\mu - \bar{X})^2 \right] = \sum_{i=1}^{n} E[(X_i - \mu)^2] - nE[(\mu - \bar{X})^2]
\]

\[
= n\sigma^2 - n\text{Var}(\bar{X}) = n\sigma^2 - n\frac{\sigma^2}{n} = n\sigma^2 - \sigma^2 = (n-1)\sigma^2
\]

- So, $E[S^2] = \sigma^2$
Sample Mean

Average Happiness

Variance of Happiness

Bhutan

Average Happiness

83

Variance of Happiness

Happiness^2

0

0

0

Bhutan

450
Sample Variance:

\[S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \]

Sample mean

Makes it “unbiased”
No Error Bars 😞
Consider \(n \) I.I.D. random variables \(X_1, X_2, \ldots, X_n \):

- \(X_i \) have distribution \(F \) with \(E[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \)
- We call sequence of \(X_i \) a **sample** from distribution \(F \)
- Recall sample mean: \(\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \) where \(E[\bar{X}] = \mu \)

What is \(\text{Var}(\bar{X}) \)?

\[
\text{Var}(\bar{X}) = \text{Var}\left(\frac{\sum_{i=1}^{n} X_i}{n} \right) = \left(\frac{1}{n} \right)^2 \text{Var}\left(\sum_{i=1}^{n} X_i \right)
\]

\[
= \left(\frac{1}{n} \right)^2 \sum_{i=1}^{n} \text{Var}(X_i) = \left(\frac{1}{n} \right)^2 \sum_{i=1}^{n} \sigma^2 = \left(\frac{1}{n} \right)^2 n\sigma^2
\]

\[
= \frac{\sigma^2}{n}
\]
Standard Error of the Mean

\[
\text{Var}(\bar{X}) = \text{Var}\left(\sum_{i=1}^{n} \frac{X_i}{n}\right) = \left(\frac{1}{n}\right)^2 \text{Var}\left(\sum_{i=1}^{n} X_i\right) = \frac{\sigma^2}{n}
\]

\[
\text{Var}(\bar{X}) = \frac{\sigma^2}{n}
\]

\[
= \frac{S^2}{n}
\]

\[
\text{Std}(\bar{X}) = \sqrt{\frac{S^2}{n}} = \sqrt{\frac{450}{200}} = \sqrt{2.25} = 1.5
\]

Since \(S^2 \) is an unbiased estimate

Change variance to standard deviation

The numbers for our Bhutanese poll

Bhutanese standard error of the mean
Sample Mean

Claim: The average happiness of Bhutan is 83 ± 2
Bootstrap:
Probability for Computer Scientists
Bootstraping allows you to:

• Know the distribution of statistics
• Calculate p values
What is the probability that a Bhutanese peep is just straight up loving life?
What is the probability that the mean of a sample of 200 people is within the range 81 to 85?
What is the variance of the sample variance of subsamples of 200 people?
Key Insight

You can estimate the PMF of the underlying distribution, using your sample.*

* This is just a histogram of your data!!
Key Insight

IID Samples

90, 92, 92, 93, 94, 94, 94, 95,

Sample Distribution

Probability Mass

90 91 92 93 94 95
Bootstrapping Assumption

$F \approx \hat{F}$

The underlying distribution

The sample distribution

(aka the histogram of your data)
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Resample `sample.size()` from PMF
 b. Recalculate the stat on the resample
3. You now have a distribution of your stat
Bootstrap Algorithm (sample):

1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw sample.size() new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means
Bootstrap Algorithm (sample):

1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw `sample.size()` new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means
Bootstrap Algorithm (sample):

1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw sample.size() new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw `sample.size()` new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw sample.size() new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7]
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw sample.size() new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7]
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw \texttt{sample.size()} new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7]
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw \texttt{sample.size()} new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7, 83.4]
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw \texttt{sample.size()} new samples from PMF
 b. Recalculate the \texttt{mean} on the resample
3. You now have a \texttt{distribution of your means}

Means = [82.7, 83.4]
Bootstrap Algorithm (sample):
1. Estimate the PMF using the sample
2. Repeat 10,000 times:
 a. Draw `sample.size()` new samples from PMF
 b. Recalculate the mean on the resample
3. You now have a distribution of your means

Means = [82.7, 83.4, 82.9, 91.4, 79.3, 82.1, ..., 81.7]
Means = [82.7, 83.4, 82.9, 91.4, 79.3, 82.1, ..., 81.7]
Bootstrap of Means

Means = [82.7, 83.4, 82.9, 91.4, 79.3, 82.1, ..., 81.7]
What is the probability that the mean is in the range 81 to 85?
Bootstrap Algorithm (sample):
1. Repeat 10,000 times:
 a. Choose sample.size elems from sample, with replacement
 b. Recalculate the stat on the resample
2. You now have a distribution of your stat
Bootstrap provides a way to calculate probabilities of statistics using code.
Bootstrap
Bradley Efron

Invented bootstraping in 1979
Still a professor at Stanford
Won a National Science Medal
Works for any statistic*

*as long as your samples are IID and the underlying distribution doesn’t have a long tail
Null Hypothesis Test

<table>
<thead>
<tr>
<th>Population 1</th>
<th>Population 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.44</td>
<td>2.15</td>
</tr>
<tr>
<td>3.36</td>
<td>3.01</td>
</tr>
<tr>
<td>5.87</td>
<td>2.02</td>
</tr>
<tr>
<td>2.31</td>
<td>1.43</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3.70</td>
<td>1.83</td>
</tr>
</tbody>
</table>

\[\mu_1 = 3.1 \]
\[\mu_2 = 2.4 \]

Claim: Population 1 and population 2 are different distributions with a 0.7 difference of means
1. Tic-Tac-Toe game.

2. Multiple-choice question:
 - A: Elliot Disease
 - B: Peregrine Falcon
 - C: Humpback Whale
 - D: Humbug

 Question: In 1999, what animal was taken off the U.S. Endangered species list after 29 years?

3. Flood risk map of Houston, TX.
Generate N values (X_1, X_2, \ldots, X_N) uniformly sampled over a range (a, b). We can approximate the integral of a function h over (a, b) as:

$$
\int_{a}^{b} h(x) \, dx \approx \frac{(b-a)}{N} \sum_{i=1}^{N} h(X_i)
$$

Monte Carlo Integration
Data

Beta

Midterm Histogram

Beta Histogram Predictions

Beta PDF

Midterm Score Bucket (m)

$X \sim \text{Beta}(a = 5.9, b = 1.7)$

$\mu = 92$

$\sigma = 17.2$

max = 118
Midterm Distribution

Data

\[X \sim \text{Beta}(a = 5.9, b = 1.7) \]

\[\mu = 92 \]
\[\sigma = 17.2 \]
\[\text{max} = 118 \]

Midterm Histogram
Beta Histogram Predictions
Beta PDF

Midterm Score Bucket \((m)\)

Core Understanding
Advanced Understanding
Midterm Cumulative Density

Midterm Score

Midterm Beta CDF

$\mu = 92$

$\sigma = 17.2$

max = 118
Midterm Distribution

P(score is in bucket m)

- Midterm Histogram
- Beta Histogram Predictions

Midterm Score Bucket (m)

- Time to strategize
- Iron out fundamentals
- Work on Details
- More Practice
- Rock on

Data
Midterm Correlation