Independence
Today, start with a cool program
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 100,000 samples
- 6 observations per sample
- G_1, G_2, G_3, G_4, G_5, T

Python code snippet:
```python
# Assume dna.txt is the input file
with open('dna.txt', 'r') as file:
    data = file.readlines()

# Process data here
```

File contents:
```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>False, True, False, False, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, False, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, False, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, False, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False, True, False, True, False, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, False, True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>True, True, False, True, True, False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Diagram:
- DNA structures labeled G_1 to G_5, terminal base T
- Data matrix with rows indicating 6 observations per sample
Discovered Pattern

\[p(T \mid G_1 \text{ and } G_2) = 0.9 \]
\[p(T \mid \neg G_1 \text{ or } \neg G_2) = 0.2 \]

These genes don’t impact T

\[p(G_5) = 0.6 \]

\[p(G_2 \mid G_5) = 0.9 \]
\[p(G_2 \mid \neg G_2) = 0.2 \]

\[p(G_1) = 0.5 \]

\[p(G_2) = 0.6 \]

\[p(G_2 \mid G_5) = 0.9 \]
\[p(G_2 \mid \neg G_5) = 0.2 \]
We’ve gotten ahead of ourselves
Start at the beginning
And vs Condition

\[P(AB) \text{ vs } P(A|B) \]

\[P(AB) = P(A|B)P(B) \]
Set Operations Review

- Say E and F are subsets of S
Set Operations Review

- Say E and F are events in S

Event that is in E or F

$E \cup F$

- $S = \{1, 2, 3, 4, 5, 6\}$ die roll outcome
- $E = \{1, 2\}$ $F = \{2, 3\}$ $E \cup F = \{1, 2, 3\}$
Set Operations Review

- Say E and F are events in S

Event that is in E and F

\[E \cap F \quad or \quad EF \]

- \(S = \{1, 2, 3, 4, 5, 6\} \) die roll outcome
- \(E = \{1, 2\} \quad F = \{2, 3\} \quad E \cap F = \{2\} \)
- **Note:** *mutually exclusive* events means \(E \cap F = \emptyset \)
Set Operations Review

• Say E and F are events in S

 Event that is not in E (called complement of E)
 \[E^c \text{ or } \sim E \]

 - \(S = \{1, 2, 3, 4, 5, 6\} \) die roll outcome
 - \(E = \{1, 2\} \) \(E^c = \{3, 4, 5, 6\} \)
Which is the correct picture for $E^c \cap F^c$?
Set Operations Review

- Say E and F are events in S

DeMorgan’s Laws

$$(E \cup F)^c = E^c \cap F^c$$

$$(E \cap F)^c = E^c \cup F^c$$
Core probability in two slides?
Law of Total Prob

\[P(E) = 1 - P(E^c) \]

Equally Likely

Cond. Prob. \(P(E|F) \)

Bayes’ Theorem

If calculating...

... you can use
Today

If calculating…

DeMorgan’s

If calculating…

OR

\[P(E \cup F) \]

Inclusion
Exclusion

Just Add!

Mutually
Exclusive?

AND

\[P(EF) \]

Independent?

Just Multiply

Chain
Rule

… you can use

… you can use
End Review
Today

DeMorgan’s

OR
\(P(E \cup F) \)

AND
\(P(EF) \)

Mutually Exclusive?

Inclusion Exclusion

Independent?

Just Add!

Just Multiply

Chain Rule

Independent?
Today

OR

\[P(E \cup F) \]

Inclusion Exclusion

- Just Add!
- Mutually Exclusive?

AND

\[P(EF) \]

Independent?

Chain Rule

- Just Multiply
- DeMorgan’s
Probability of “OR”
OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

\[P(E \cup F) = P(E) + P(F) \]
If events are mutually exclusive, probability of OR is simple:

\[P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50} \]
OR with Many Mutually Exclusive Events

\[P(X_1 \cup X_2 \cup \cdots \cup X_n) = \sum_{i=1}^{n} P(X_i) \]

Wahoo! All my events are mutually exclusive
If events are *mutually exclusive* probability of OR is easy!
What about when they are not *Mutually exclusive*?
OR without Mutually Exclusivity

\[P(E \cup F) = P(E) + P(F) - P(\ EF) \]

AKA
Inclusion Exclusion
\[P(E \cup F) = \frac{8}{50} + \frac{14}{50} - \frac{3}{50} = \frac{19}{50} \]
More than two sets?
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = \]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) \]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) + P(F) \]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) + P(F) + P(G) \]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) \]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) \]
Inclusion Exclusion with Three Sets

\[
P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG)
\]
Inclusion Exclusion with Three Sets

\[P(E \cup F \cup G) = P(E) + P(F) + P(G) \]

\[-P(EF) - P(EG) - P(FG) \]

\[+ P(EFG) \]
General Inclusion Exclusion

\[P(E_1 \cup E_2 \cup \cdots \cup E_n) = \sum_{r=1}^{n} (-1)^{r+1} Y_r \]

* Where \(Y_r \) is the sum, for all combinations of \(r \) events, of the probability of the union those events.

\(Y_1 = \) Sum of all events on their own \[\sum_{i} P(E_i) \]

\(Y_2 = \) Sum of all pairs of events \[\sum_{i,j \text{ s.t.} i \neq j} P(E_i \cap E_j) \]

\(Y_3 = \) Sum of all triples of events \[\sum_{i,j,k \text{ s.t.} i \neq j, j \neq k, i \neq k} P(E_i \cap E_j \cap E_k) \]
Today

\[P(E \cup F) \]

\[P(E \cap F) \]

DeMorgan’s

Mutually Exclusive?

Inclusion Exclusion

Just Add!

AND

\[P(EF) \]

Independent?

Just Multiply

Chain Rule
Today

\[P(E \cup F) \]

\[P(E \cap F) \]

DeMorgan’s

Mutually Exclusive?

Just Add!

Inclusion Exclusion

Independent?

Just Multiply

Chain Rule

\[P(EF) = P(E|F)P(F) \]
Today

- OR
 - $P(E \cup F)$
- AND
 - $P(EF)$

- Mutually Exclusive?
- Inclusion Exclusion
 - Just Add!
- Independent?
 - Just Multiply
 - Chain Rule

DeMorgan’s
Probability of “AND”
Two events A and B are called \textbf{independent} if:

\[P(AB) = P(A)P(B) \]

Otherwise, they are called \textbf{dependent} events.
If events are *independent* probability of AND is easy!

You will need to use this “trick” with high probability
Let A and B be independent

\[P(A|B) = \frac{P(AB)}{P(B)} \]

\[= \frac{P(A)P(B)}{P(B)} \]

\[= P(A) \]

Intuition through proofs

Definition of conditional probability

Since A and B are independent

Taking the bus to cancel city

Knowing that event B happened, doesn’t change our belief that A will happen.
Roll two 6-sided dice, yielding values D_1 and D_2

- Let E be event: $D_1 = 1$
- Let F be event: $D_2 = 1$

What is $P(E)$, $P(F)$, and $P(EF)$?

- $P(E) = \frac{1}{6}$, $P(F) = \frac{1}{6}$, $P(EF) = \frac{1}{36}$
- $P(EF) = P(E) P(F) \rightarrow E$ and F independent

Let G be event: $D_1 + D_2 = 5 \{ (1, 4), (2, 3), (3, 2), (4, 1) \}$

What is $P(E)$, $P(G)$, and $P(EG)$?

- $P(E) = \frac{1}{6}$, $P(G) = \frac{4}{36} = \frac{1}{9}$, $P(EG) = \frac{1}{36}$
- $P(EG) \neq P(E) P(G) \rightarrow E$ and G dependent
What does independence look like?
Independence Definition 1:

\[P(AB) = P(A)P(B) \]

\[\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|} \]
Independence

Independence Definition 1:

\[P(AB) = P(A)P(B) \]

\[\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|} \]

Independence Definition 2:

\[P(A|B) = P(A) \]

\[\frac{|AB|}{|B|} = \frac{|A|}{|S|} \]
Independence

This ratio, $P(A)$…

… is the same as this one, $P(A|B)$
Independence

Independence Definition 1:
\[P(AB) = P(A)P(B) \]
\[\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|} \]

Independence Definition 2:
\[P(A|B) = P(A) \]
\[\frac{|AB|}{|B|} = \frac{|A|}{|S|} \]
More Intuition through proofs:
Given independent events A and B, prove that A and B^C are independent.

We want to show that $P(AB^C) = P(A)P(B^C)$

\[
P(AB^C) = P(A) - P(AB)
\]

\[
= P(A) - P(A)P(B)
\]

\[
= P(A)[1 - P(B)]
\]

\[
= P(A)P(B^C)
\]

By Total Law of Prob.

By independence

Factoring

Since $P(B) + P(B^C) = 1$

So if A and B are independent A and B^C are also independent.
Generalization
Generalized Independence

- General definition of Independence:
 Events $E_1, E_2, ..., E_n$ are independent if for every subset with r elements (where $r \leq n$) it holds that:
 \[
P(E_1' \cap E_2' \cap E_3' \cap ... \cap E_r') = P(E_1')P(E_2')P(E_3')...P(E_r')
 \]

- Example: outcomes of n separate flips of a coin are all independent of one another
 - Each flip in this case is called a “trial” of the experiment
Math > Intuition
Two Dice

- Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 6$
 - Are E and F independent? Yes!

- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - $P(E) = 1/6$, $P(G) = 1/6$, $P(E \cap G) = 1/36$ [roll (1, 6)]
 - Are F and G independent? Yes!
 - $P(F) = 1/6$, $P(G) = 1/6$, $P(F \cap G) = 1/36$ [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(E \cap F \cap G) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$
New Ability
Today

DeMorgan’s

OR
P(E ∪ F)

AND
P(EF)

Mutually Exclusive?

Just Add!

Inclusion Exclusion

Independent?

Just Multiply!

Chain Rule

Independent?
Today

DeMorgan’s

OR
P(E \cup F)

Mutually Exclusive?

Just Add!

Inclusion Exclusion

Independent?

AND
P(EF)

Just Multiply!

Chain Rule
Use the two properties (mutual exclusion and independence)
• Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
- $E =$ functional path from A to B exists. What is $P(E)$?
Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)

- $E =$ functional path from A to B exists. What is $P(E)$?
• Consider the following parallel network:

 A \[\xrightarrow{p_1} \xrightarrow{p_2} \cdots \xrightarrow{p_n} \] B

 - \(n \) independent routers, each with probability \(p_i \) of functioning (where \(1 \leq i \leq n \))
 - \(E \) = functional path from A to B exists. What is \(P(E) \)?

• Solution:
 - \(P(E) = 1 - P(\text{all routers fail}) \)
 - \(= 1 - (1 - p_1)(1 - p_2)\ldots(1 - p_n) \)
 - \(= 1 - \prod_{i=1}^{n} (1 - p_i) \)
Say a coin comes up heads with probability p
 ▪ Each coin flip is an independent trial

P(n heads on n coin flips) = p^n
P(n tails on n coin flips) = (1 – p)^n
P(first k heads, then n – k tails) = p^k (1 – p)^{n-k}
P(exactly k heads on n coin flips) =?
P(exactly k heads on n coin flips)?

\[\binom{n}{k} p^k (1 - p)^{n-k} \]

Think of the flips as ordered:

- Ordering 1: T, H, H, T, T...
- And so on...

Let's make each ordering with k heads an event... F_i

The coin flips are independent!

\[P(F_i) = p^k (1 - p)^{n-k} \]

P(exactly k heads on n coin flips) = P(any one of the events)

P(exactly k heads on n coin flips) = P(F_1 or F_2 or F_3...)

Those events are mutually exclusive!
• \(m \) strings are hashed (unequally) into a hash table with \(n \) buckets
 ▪ Each string hashed is an **independent** trial, with probability \(p_i \) of getting hashed to bucket \(i \)
 ▪ \(E = \) at least one string hashed to first bucket
 ▪ What is \(P(E) \)?
• Solution

To the white board
Hash Tables

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - $E =$ at least one string hashed to first bucket
 - What is $P(E)$?

- Solution

To the white board
• \(m \) strings are hashed (unequally) into a hash table with \(n \) buckets

 ▪ Each string hashed is an **independent** trial, with probability \(p_i \) of getting hashed to bucket \(i \)

 ▪ \(E = \text{At least 1 of} \) buckets 1 to \(k \) has \(\geq 1 \) string hashed to it

• Solution

 ▪ \(F_i = \) at least one string hashed into \(i \)-th bucket

 ▪ \(P(E) = P(F_1 \cup F_2 \cup \ldots \cup F_k) = 1 - P((F_1 \cup F_2 \cup \ldots \cup F_k)^c) \)

 \[= 1 - P(F_1^c F_2^c \ldots F_k^c) \quad \text{(DeMorgan’s Law)} \]

 ▪ \(P(F_1^c F_2^c \ldots F_k^c) = P(\text{no strings hashed to buckets 1 to } k) \)

 \[= (1 - p_1 - p_2 - \ldots - p_k)^m \]

 ▪ \(P(E) = 1 - (1 - p_1 - p_2 - \ldots - p_k)^m \)
• m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - $E = \text{Each of}$ buckets 1 to k has ≥ 1 string hashed to it
No, Really, More Hash Tables
• m strings are hashed (unequally) into a hash table with n buckets
 ▪ Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 ▪ $E =$ Each of buckets 1 to k has ≥ 1 string hashed to it

• Solution
 ▪ $F_i =$ at least one string hashed into i-th bucket
 ▪ $P(E) = P(F_1 F_2 \ldots F_k) = 1 - P((F_1 F_2 \ldots F_k)^c)$
 $= 1 - P(F_1^c \cup F_2^c \cup \ldots \cup F_k^c)$ (DeMorgan’s Law)
 $= 1 - P \left(\bigcup_{i=1}^{k} F_i^c \right) = 1 - \sum_{r=1}^{k} (-1)^{r+1} \sum_{i_1 < \ldots < i_r} P(F_{i_1}^c F_{i_2}^c \ldots F_{i_r}^c)$

where $P(F_{i_1}^c F_{i_2}^c \ldots F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} - \ldots - p_{i_r})^m$
Phew!
Now two great tastes...
And Learn
What is the probability that a user will watch Life is Beautiful?

\[P(E) \]

\[P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\# \text{people who watched movie}}{\# \text{people on Netflix}} \]

\[P(E) = \frac{10,234,231}{50,923,123} = 0.20 \]
What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

\[
P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{#people who watched both}}{\text{#people who watched } F}
\]

\[P(E|F) = 0.42\]
Conditioned on liking a set of movies?
Netflix and Learn

Each event corresponds to liking a particular movie

\[P(E_4 | E_1, E_2, E_3) \]
Is E_4 independent of E_1, E_2, E_3?
Is E_4 independent of E_1, E_2, E_3?

$$P(E_4|E_1, E_2, E_3) = P(E_4)$$
Is E_4 independent of E_1, E_2, E_3?

\[
P(E_4 | E_1, E_2, E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}
\]
What is the probability that a user watched four particular movies?

- There are 13,000 titles on Netflix
- The user watches 30 random titles
- E = movies watched include the given four.

Solution:

\[
P(E) = \frac{\binom{4}{4} \cdot \binom{12996}{24}}{\binom{13000}{30}} = 10^{-11}
\]
Netflix and Learn

E_1

E_2

E_3

E_4
Like foreign emotional comedies

Assume E_1, E_2, E_3 and E_4 are conditionally independent given K_1.
Like foreign emotional comedies

Assume E_1, E_2, E_3 and E_4 are conditionally independent given K_1.
Netflix and Learn

\[K_1 \]

Like foreign emotional comedies

Assume \(E_1, E_2, E_3 \) and \(E_4 \) are conditionally independent given \(K_1 \).
Like foreign emotional comedies

\[P(E_4|E_1, E_2, E_3, K_1) = P(E_4|K_1) \]

Assume \(E_1, E_2, E_3 \) and \(E_4 \) are conditionally independent given \(K_1 \).
Conditional independence is a practical, real world way of decomposing hard probability questions.
If E and F are dependent, that does not mean E and F will be dependent when another event happens.
If E and F are independent, that does not mean E and F will be independent when another event happens.
“Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory”

-Judea Pearl wins 2011 Turing Award, “For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning”
Here we are
Discovered Pattern

```bash
$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
p(T and G2) = 0.808 , P(T)p(G2) = 0.218
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309 , P(T)p(G5) = 0.234
T is independent of G3
T is independent of G4
G1 is independent of G2
G1 is independent of G5
T is independent of G5 | G2
```
Mutual exclusion
And
Independence

Are two properties of events that make it easy to calculate probabilities.