Joint Distributions
Noah Arthurs
CS109, Stanford University
Midterm:
• Tuesday the 23rd 7-9PM
• Covers through today*
• Unlimited notes/textbook, no calculator or computer.
• More review sheets coming today.

PS4:
• Out today! Problems above the line recommended for before midterm.
Review
And here we are

\[F(x) = \Phi \left(\frac{x - \mu}{\sigma} \right) \]

CDF of Standard Normal: A function that has been solved for numerically

The cumulative density function (CDF) of any normal

\[\mathcal{N}(\mu, \sigma^2) \]
Normal Approximates Binomial

The graph shows a comparison between a binomial distribution (Bin(100, 0.5)) and a normal distribution (Normal(50, 25)). The binomial distribution is represented by a shaded histogram, while the normal distribution is shown by a smooth curve. The normal distribution approximates the binomial distribution as the number of trials becomes large.
Continuity Correction

If \(Y \) (normal) approximates \(X \) (binomial)

\[
P(X \geq 65) \\
\approx P(Y \geq 64.5) \\
\approx 0.0018
\]

What about 64.9?
Continuity Correction

Use the continuity correction when approximating a discrete value with a continuous distribution.
Who Gets to Approximate?

$X \sim \text{Bin}(n, p)$

Poisson approx.
- n large (> 20),
- p small (< 0.05)

Normal approx.
- n large (> 20),
- p is mid-ranged
- $np(1-p) > 10$

If there is a choice, go with the normal approximation.
Probability Table for Discrete

- States all possible outcomes with several discrete variables
- A probability table is not “parametric”
- If #variables is > 2, you can have a probability table, but you can’t draw it on a slide

<table>
<thead>
<tr>
<th>All values of B</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>$P(A = 1, B = 1)$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here "," means “and”

Every outcome falls into a bucket
Discrete Joint Mass Function

- For two discrete random variables X and Y, the **Joint Probability Mass Function** is:

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

- Marginal distributions:

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a,y)$$

$$p_Y(b) = P(Y = b) = \sum_x p_{X,Y}(x,b)$$

- Example: $X =$ value of die D_1, $Y =$ value of die D_2

$$P(X = 1) = \sum_{y=1}^{6} p_{X,Y}(1,y) = \sum_{y=1}^{6} \frac{1}{36} = \frac{1}{6}$$
A Computer (or Three) In Every House

- Consider households in Silicon Valley
 - A household has X Macs and Y PCs
 - Can’t have more than 3 Macs or 3 PCs

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(p_Y(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.16</td>
<td>0.12</td>
<td>?</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\[
p_X(x) \]
Consider households in Silicon Valley

- A household has \(X \) Macs and \(Y \) PCs
- Can’t have more than 3 Macs or 3 PCs

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(X)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(p_Y(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.16</td>
<td>0.12</td>
<td>0.07</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\(p_X(x) \)
A Computer (or Three) In Every House

- Consider households in Silicon Valley
 - A household has X Macs and Y PCs
 - Can’t have more than 3 Macs or 3 PCs

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$p_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>0</td>
<td>0.16</td>
<td>0.12</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.07</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
</tr>
</tbody>
</table>

$\sum_{y} p_Y(y) = 1.00$, $\sum_{x} p_X(x) = 1.00$

Marginal distributions
End Review
Permutations

How many ways are there to order n distinct objects?

$n!$
How many ways are there to make an unordered selection of \(r \) objects from \(n \) objects?

How many ways are there to order \(n \) objects such that:
- \(r \) are the same (indistinguishable)
- \((n-r) \) are the same (indistinguishable)?

\[
\frac{n!}{r!(n-r)!} = \binom{n}{r}
\]

Called the “binomial” because of something from Algebra
Consider n independent trials of Ber(p) random variable.

- X is the number of successes in n trials.
- X is a **Binomial** Random Variable: $X \sim \text{Bin}(n, p)$

Binomial # ways of ordering the successes

$$P(X = i) = p(i) = \binom{n}{i} p^i (1 - p)^{n-i} \quad i = 0, 1, \ldots, n$$

Probability of exactly i successes

Probability of each ordering of i successes is equal + mutually exclusive
How many ways are there to order n objects such that:

- n_1 are the same (indistinguishable)
- n_2 are the same (indistinguishable)
- ...
- n_r are the same (indistinguishable)?

\[
\frac{n!}{n_1!n_2! \ldots n_r!} = \binom{n}{n_1, n_2, \ldots, n_r}
\]

Note: Multinomial > Binomial
The Multinomial

- Multinomial distribution
 - n independent trials of experiment performed
 - Each trial results in one of m outcomes, with respective probabilities: p_1, p_2, \ldots, p_m where $\sum_{i=1}^{m} p_i = 1$
 - X_i = number of trials with outcome i

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \ldots p_m^{c_m}$$

where $\sum_{i=1}^{m} c_i = n$ and

$$\binom{n}{c_1, c_2, \ldots, c_m} = \frac{n!}{c_1! c_2! \cdots c_m!}$$
Hello Die Rolls, My Old Friends

• 6-sided die is rolled 7 times
 ▪ Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

\[P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) \]
\[= \frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3 = 420 \left(\frac{1}{6} \right)^7 \]

• This is generalization of Binomial distribution
 ▪ Binomial: each trial had 2 possible outcomes
 ▪ Multinomial: each trial has \(m \) possible outcomes
• Ignoring order of words, what is probability of any given word you write in English?
 - \(P(\text{word} = \text{“the”}) > P(\text{word} = \text{“transatlantic”}) \)
 - \(P(\text{word} = \text{“Stanford”}) > P(\text{word} = \text{“Cal”}) \)
 - Probability of each word is just multinomial distribution

• What about probability of those same words in someone else’s writing?
 - \(P(\text{word} = \text{“probability”} \mid \text{writer} = \text{you}) > P(\text{word} = \text{“probability”} \mid \text{writer} = \text{non-CS109 student}) \)
 - After estimating \(P(\text{word} \mid \text{writer}) \) from known writings, use Bayes’ Theorem to determine \(P(\text{writer} \mid \text{word}) \) for new writings!
According to the Global Language Monitor there are 988,968 words in the English language used on the internet.
Example document:
“Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free.”

\[n = 18 \]

\[
P \left(\begin{array}{c}
\text{Viagra} = 2 \\
\text{Free} = 2 \\
\text{Risk} = 1 \\
\text{Credit-card: 2} \\
\ldots \\
\text{For} = 2 \\
\end{array} \vert \text{spam} \right) = \frac{n!}{2!2! \ldots 2!} p_{\text{viagra}}^2 p_{\text{free}}^2 \ldots p_{\text{for}}^2
\]

Probability of seeing this document | spam

It's a Multinomial!

The probability of a word in spam email being viagra
Who wrote the federalist papers?
• Authorship of “Federalist Papers”

 ▪ 85 essays advocating ratification of US constitution

 ▪ Written under pseudonym “Publius”
 ○ Really, Alexander Hamilton, James Madison and John Jay

 ▪ Who wrote which essays?
 ○ Analyzed probability of words in each essay versus word distributions from known writings of three authors
Let’s write a program!
Log Review

\[e^y = x \quad \text{log}(x) = y \]
Log Identities

\[\log(a \cdot b) = \log(a) + \log(b) \]

\[\log(a/b) = \log(a) - \log(b) \]

\[\log(a^n) = n \cdot \log(a) \]
Products become Sums!

\[
\log(a \cdot b) = \log(a) + \log(b)
\]

\[
\log(\prod_{i} a_i) = \sum_{i} \log(a_i)
\]

This is important because the product of many small numbers gets hard for computers to represent.
Four Prototypical Trajectories

Stretch!
Continuous Joint
Noah Arthurs
CS109, Stanford University
Continuous Random Variables

Joint Distributions
Continuous Joint Distribution
You are running to the bus stop. You don’t know exactly when the bus arrives. You arrive at 2:20pm.

What is $P(\text{wait} < 5 \text{ min})$?
Joint Dart Distribution

Dart Results \[P(\text{hit within } R\ \text{pixels of center})? \]

What is the probability that a dart hits at (456.234231234122355, 532.12344123456)?
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?

Dart y location

Dart x location

0.005

0.12
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?

Dart x location

Dart y location

0.005

0.12

0.005

Leland Stanford Junior University

Die Luft der Freiheit weht
Joint Dart Distribution

Dart Results

P(hit within R pixels of center)?
In the limit, as you break down continuous values into intestinally small buckets, you end up with multidimensional probability density
A joint probability density function gives the relative likelihood of more than one continuous random variable each taking on a specific value.

\[
P(a_1 < X < a_2, b_1 < Y < b_2) = \int_{x=a_1}^{a_2} \int_{y=b_1}^{b_2} f(X = x, Y = y) \, \partial y \partial x
\]
Joint Probability Density Function

\[P(a_1 < X < a_2, b_1 < Y < b_2) = \int_{x=a_1}^{a_2} \int_{y=b_1}^{b_2} f(X = x, Y = y) \, \partial y \partial x \]

\[f_{X,Y}(x, y) \]
Joint Probability Density Function

\[P(a_1 < X < a_2, b_1 < Y < b_2) = \int_{x=a_1}^{a_2} \int_{y=b_1}^{b_2} f(X = x, Y = y) \, dy \, dx \]
Let X and Y be two continuous random variables
- where $0 \leq X \leq 1$ and $0 \leq Y \leq 2$

We want to integrate $g(x,y) = xy$ w.r.t. X and Y:
- First, do “innermost” integral (treat y as a constant):

\[
\int_{y=0}^{2} \int_{x=0}^{1} xy \, dx \, dy = \int_{y=0}^{2} \left(\int_{x=0}^{1} xy \, dx \right) \, dy = \int_{y=0}^{2} y \left[\frac{x^2}{2} \right]_{0}^{1} \, dy = \int_{y=0}^{2} y \frac{1}{2} \, dy
\]
- Then, evaluate remaining (single) integral:

\[
\int_{y=0}^{2} y \frac{1}{2} \, dy = \left[\frac{y^2}{4} \right]_{0}^{2} = 1 - 0 = 1
\]
Marginalization

Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don’t care about.

\[
p_X(a) = \sum_y p_{X,Y}(a, y)
\]

\[
f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) \, dy
\]

\[
f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx
\]
Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don’t care about.

\[p_X(a) = \sum_y P(X = a, Y = y) \]

\[f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) \, dy \]

\[f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx \]
Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don’t care about.

\[p_X(a) = \sum_y P(X = a, Y = y) \]

\[f_X(a) = \int_{-\infty}^{\infty} f(X = a, Y = y) \, dy \]

\[f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx \]
Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don’t care about.

\[P(X = a) = \sum_y P(X = a, Y = y) \]

\[f(X = a) = \int_{-\infty}^{\infty} f(X = a, Y = y) \]

\[f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) \, dx \]
Darts!

X-Pixel Marginal

\[X \sim \mathcal{N}\left(\frac{900}{2}, \frac{900}{2}\right) \]

Y-Pixel Marginal

\[Y \sim \mathcal{N}\left(\frac{900}{3}, \frac{900}{5}\right) \]
Joint Cumulative Density Function

Cumulative Density Function (CDF):

\[F_{X,Y}(a, b) = P(X < a, Y < b) \]

Joint Cumulative Density Function

\[F_{X,Y}(a, b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y) \, dy \, dx \]

\[f_{X,Y}(a, b) = \frac{\partial^2}{\partial a \partial b} F_{X,Y}(a, b) \]
Joint CDF

$$F_{X,Y}(a, b) = P(X < a, Y < b)$$

to 0 as $x \to -\infty, y \to -\infty$

to 1 as $x \to +\infty, y \to +\infty$

plot by Academo
Jointly Continuous

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) \]
Probabilities from Joint CDF

\[P\left(a_1 < X \leq a_2, b_1 < Y \leq b_2\right) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) \]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) \]
Probabilities from Joint CDF

\[
P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)
\]
Probabilities from Joint CDF

\[P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1) \]
Probability for Instagram!
In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

\[f_{X,Y}(x, y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2+y^2}{2\cdot3^2}} \]

Joint CDF

\[F_{X,Y}(x, y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right) \]
Joint PDF

\[f_{X,Y}(x, y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2+y^2}{2 \cdot 3^2}} \]

Joint CDF

\[F_{X,Y}(x, y) = \Phi \left(\frac{x}{3} \right) \cdot \Phi \left(\frac{y}{3} \right) \]

Each pixel is given a weight equal to the probability that \(X \) and \(Y \) are both within the pixel bounds. The center pixel covers the area where

\[-0.5 \leq x \leq 0.5 \text{ and } -0.5 \leq y \leq 0.5\]

What is the weight of the center pixel?

\[
P(-0.5 < X < 0.5, -0.5 < Y < 0.5)
= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5)
\quad - P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5)
\]

\[
= \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{0.5}{3} \right) - 2 \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right)
+ \phi \left(\frac{-0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right)
\]

\[
= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206
\]
How do you integrate under a circle?

$$f(X = x, Y = y)$$