Overview of Section Materials
The warmup questions provided will help students practice concepts introduced in lectures. The section problems are meant to apply these concepts in more complex scenarios similar to what you will see in problem sets and quizzes.

1 Warmups

1.1 Website Visits
You have a website where only one visitor can be on the site at a time, but there is an infinite queue of visitors, so that immediately after a visitor leaves, a new visitor will come onto the website. On average, visitors leave your website after 5 minutes. Assume that the length of stay is exponentially distributed. What is the probability that a user stays more than 10 minutes, if we calculate this probability:

 a. using the random variable X, defined as the length of stay of the user?

 b. using the random variable Y, defined as the number of users who leave your website over a 10-minute interval?

1.2 Continuous Random Variables
Let X be a continuous random variable with the following probability density function:

$$f_X(x) = \begin{cases}
c(e^{x-1} + e^{-x}) & \text{if } 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}$$

 a. Find the value of c that makes f_X a valid probability distribution.

 b. What is $P(X > 0.75)$?
2 Problems

2.1 Conditional Probabilities: Corrupt Hot-Dog-Eating Contest Judges

Preamble: We have three big tools for manipulating conditional probabilities:

- Definition of conditional probability: \(P(EF) = P(E|F)P(F) \)
- Law of Total Probability: \(P(E) = P(EF) + P(EF^C) = P(E|F)P(F) + P(E|F^C)P(F^C) \)
- Bayes Rule: \(P(E|F) = \frac{P(F|E)P(E)}{P(F)} = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^C)P(E^C)} \)

This is a good time to commit these three to memory and start thinking about when each of them is useful.

Problem: Corrupted by their power, the judges running the popular game show Americas Next Top Hot Dog Eater have been taking bribes from many of the contestants. During each of two episodes, a given contestant is either allowed to stay on the show or is kicked off. If the contestant has been bribing the judges, she will be allowed to stay with probability 1. If the contestant has not been bribing the judges, she will be allowed to stay with probability 1/3, independent of what happens in earlier episodes. Suppose that 1/4 of the contestants have been bribing the judges. The same contestants bribe the judges in both rounds.

a. If you pick a random contestant, what is the probability that she is allowed to stay during the first episode?

b. If you pick a random contestant, what is the probability that she is allowed to stay during both episodes?

c. If you pick a random contestant who was allowed to stay during the first episode, what is the probability that she gets kicked off during the second episode?

d. If you pick a random contestant who was allowed to stay during the first episode, what is the probability that she was bribing the judge?

2.2 More Bit Strings

Once again, we’re sending bit strings across potentially noisy communication channels, just like last week. However, this week we’re identifying bit string corruptions in a slightly different way. Now, whenever we want to send \(n \) bits of information, we send an extra as the \(n + 1^{st} \) bit. Specifically, if the sum of the \(n \) data bits is even, the extra \(n + 1^{st} \) bit sent is set to 0. If the sum of the \(n \) data bits is odd, then \(n + 1^{st} \) bit appended is set to 1. If the recipient of the bit string adds all bits and gets an odd number, that recipient knows there’s a problem and can request a repeat transmission. We’ll assume that each bit is erroneously inverted with probability nonzero \(p \leq 0.5 \), and that all bit corruptions are independent of one another.
a. Assuming that $n = 4$ and $p = 0.1$, what is the probability the transmitted message has errors without being detected?

b. For arbitrary n and p, what is the probability that a bit string is flagged as bogus? You may leave it as a sum of $O(n)$ terms.

c. Simplify your answer from part b by letting $a = \sum_{\text{odd}k} \binom{n+1}{k} p^k (1 - p)^{n+1-k}$ and $b = \sum_{\text{even}k} \binom{n+1}{k} p^k (1 - p)^{n+1-k}$ and then considering what $a + b$ and $a - b$ equal. Leverage the fact that, in general, $(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$.