Section #3: Continuous Random Variables

1. Website Visits: On average, visitors leave your website after 5 minutes. Assume that the length of stay is exponentially distributed. What is the probability that a user stays more than 10 minutes?

2. Approximating Normal: Your website has 100 users and each day each user independently has a 20% chance of logging into your website. Use a normal approximation to estimate the probability that more than 21 users log in.

3. ReCaptcha: Based on browser history, Google believes that there is a 0.2 probability that a particular visitor to a website is a robot. They decide to give the visitor a recaptcha:

Google presents the visitor with a box, 10mm by 10mm. The visitor must click inside the box to show that they are not a robot. You have observed that robots click uniformly in the box. However, the distance location of a human click has X location (mm from the left) and the Y location (mm from the right) distributed as independent normals both with mean $\mu = 5$ and $\sigma^2 = 4$:

a. What the the probability density function of a robot clicking $X = x$ mm from the left of the box and $Y = y$ mm from the top of the box?

b. What the the probability density function of a human clicking $X = x$ mm from the left of the box and $Y = y$ mm from the top of the box?

c. The visitor clicks in the box at $(x = 6 \text{ mm}, y = 6 \text{ mm})$. What is Google’s new belief that the visitor is a robot?

4. It’s Complicated

This probability table shows the joint distribution between two random variables: the year of the student at Stanford (Y) and their relationship status (R). The data was volunteered last year by over 200 anonymous students:
Single In a Relationship It’s Complicated

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>In a Relationship</th>
<th>It’s Complicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0.12</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Sophomore</td>
<td>0.17</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>Junior</td>
<td>0.10</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>Senior</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>5+</td>
<td>0.04</td>
<td>0.10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

a. What is the marginal probability distribution for relationship status at Stanford \((R) \)? Provide your result as a mapping between the values that \(R \) can take on and the corresponding probabilities.

b. What is the conditional probability of relationship status \((R) \) given that a student is a Senior \((Y = \text{Senior}) \)? Provide your result as a mapping between the values that \(R \) can take on and the corresponding probabilities.

c. What is the conditional probability that someone is “In a Relationship” given their year in school, \(P(R = \text{In a Relationship}|Y) \)? Give your answer as a mapping between the values that \(Y \) can take on and the corresponding probabilities.

5. **Student Heights**: Adult heights can be considered to be normally distributed, but the distributions are different between men and women.

 a. Adult women have a mean height of 65 inches and a standard deviation of 3.5 inches. What is the probability that a randomly selected adult woman is over 72 inches? What is the probability that a randomly selected woman is between 63 and 65 inches?

 b. Adult men are slightly taller, and the distribution of their heights has a slightly different spread. We know that the average adult man is 70 inches tall, and that 10 percent of adult men are under 65 inches tall. What is the standard deviation of adult men’s heights, if they are normally distributed?

 c. Chris Piech is 6’5” (77 inches) tall. What is the probability that, of the six men in a typical section, at least one of them is taller than Chris? What is the probability that there another man is exactly the same height as Chris? What is the probability that another man is approximately his same height (i.e. within +/- half an inch)?

6. **Elections**: We would like to see how we could predict an election between two candidates in France (A and B), given data from 10 polls. For each of the 10 polls, we report below their sample size, how many people said they would vote for candidate A, and how many people said they would vote for candidate B. Not all polls are created equal, so for each poll we also report a value "weight" which represents how accurate we believe the poll was. The data for this problem can be found on the class website in polls.csv:
a. First, assume that each sample in each poll is an independent experiment of whether or not a random person in France would vote for candidate A (disregard weights).

- Calculate the probability that a random person in France votes for candidate A.
- Assume each person votes for candidate A with the probability you’ve calculated and otherwise votes for candidate B. If the population of France is 64,888,792, what is the probability that candidate A gets more than half of the votes?

b. Nate Silvers at fivethirtyeight pioneered an approach called the "Poll of Polls" to predict elections. For each candidate A or B, we have a random variable S_A or S_B which represents their strength on election night (like ELO scores). The probability that A wins is $P(S_A > S_B)$.

- Identify the parameters for the random variables S_A and S_B. Both S_A and S_B are defined to be normal with the following parameters:

$$S_A \sim \mathcal{N} \left(\mu = \sum_i p_{A_i} \cdot \text{weight}_i, \sigma^2 \right) \quad S_B \sim \mathcal{N} \left(\mu = \sum_i p_{B_i} \cdot \text{weight}_i, \sigma^2 \right)$$

where p_{A_i} is the ratio of A votes to N samples in poll i, p_{B_i} is the ratio of B votes to N samples in poll i, weight, is the weight of poll i, m_i is the N samples in poll i and:

$$\sigma = \frac{K}{\sqrt{\sum_i m_i}} \quad \text{s.t.} \quad K = 350; \quad \text{thus} \quad \sigma = 4.054.$$
Midterm Prep Guiding Questions The midterm exam is coming up. Below are a few broad, guiding questions you might use to help solidify your thinking, prepare a study guide, etc. This is not meant to be a comprehensive list of exam topics; everything we’ve seen through Friday of week 5 is fair game for the exam. Please come to office hours if you’d like to discuss further!

1. **Counting** What is probability and what are the 3 axioms? What are event and sample spaces? What’s the significance of equally likely events in probability problem-solving? How do we reason differently about distinct vs. indistinct events? What’s the difference between combinations and permutations? What are the sum rule, product rule, inclusion-exclusion and pigeonhole principles, and when do we use them?

2. **Probability Rules** When do we use the definition of conditional probability, the chain rule, the law of total probability, Bayes’ theorem, the Complement Rule, DeMorgan’s law etc.? What are independence and conditional independence?

3. **Random Variables** What does randomness mean? What are expectation and variance, generally? What’s the difference between continuous and discrete random variables? We’ve seen lots of random variables - in which situations would each of them be appropriate? Which ones can be used to approximate others, and in which cases? What’s the difference between PMF, PDF, and CDF? What are multivariate distributions and conditional distributions, and how do we reason about them in both discrete and continuous situations?