Choosing a Random Subset

• From set of n elements, choose a subset of size k such that all $\binom{n}{k}$ possibilities are equally likely
 ▪ Only have `random()`, which simulates $X \sim \text{Uni}(0, 1)$

• Brute force:
 ▪ Generate (an ordering of) all subsets of size k
 ▪ Randomly pick one (divide $(0, 1)$ into $\binom{n}{k}$ intervals)
 ▪ Expensive with regard to time and space
 ▪ Bad times!
(Happily) Choosing a Random Subset

- **Good times:**

  ```c
  int indicator(double p) {
    if (random() < p) return 1; else return 0;
  }

  subset rSubset(k, set of size n) {
    subset_size = 0;
    I[1] = indicator((double)k/n);
    for(i = 1; i < n; i++) {
      subset_size += I[i];
      I[i+1] = indicator((k - subset_size)/(n - i));
    }
    return (subset containing element[i] iff I[i] == 1);
  }

  \[
P(I[1] = 1) = \frac{k}{n} \quad \text{and} \quad P(I[i+1] = 1 \mid I[1], \ldots, I[i]) = \frac{k - \sum_{j=1}^{i} I[j]}{n - i} \quad \text{where} \quad 1 < i < n\]
  ```
Random Subsets the Happy Way

- Proof (Induction on \((k + n)\)): (i.e., why this algorithm works)
 - Base Case: \(k = 1, n = 1\), Set \(S = \{a\}\), \(r\text{Subset}\) returns \(\{a\}\) with \(p=1/1\)
 - Inductive Hypoth. (IH): for \(k + x \leq c\), Given set \(S\), \(|S| = x \) and \(k \leq x\), \(r\text{Subset}\) returns any subset \(S'\) of \(S\), where \(|S'| = k\), with \(p = 1/\binom{x}{k}\)
 - Inductive Case 1: (where \(k + n \leq c + 1\)) \(|S| = n (= x + 1)\), \(I[1] = 1\)
 - Elem 1 in subset, choose \(k - 1\) elems from remaining \(n - 1\)
 - By IH: \(r\text{Subset}\) returns subset \(S'\) of size \(k - 1\) with \(p = 1/\binom{n-1}{k-1}\)
 - \(P(I[1] = 1, \text{subset } S') = \frac{k}{n} \cdot \frac{1}{\binom{n-1}{k-1}} = \frac{1}{\binom{n}{k}}\)
 - Inductive Case 2: (where \(k + n \leq c + 1\)) \(|S| = n (= x + 1)\), \(I[1] = 0\)
 - Elem 1 not in subset, choose \(k\) elems from remaining \(n - 1\)
 - By IH: \(r\text{Subset}\) returns subset \(S'\) of size \(k\) with \(p = 1/\binom{n-1}{k}\)
 - \(P(I[1] = 0, \text{subset } S') = \left(1 - \frac{k}{n}\right) \cdot \frac{1}{\binom{n-1}{k}} = \left(\frac{n-k}{n}\right) \cdot \frac{1}{\binom{n-1}{k}} = \frac{1}{\binom{n}{k}}\)
Sum of Independent Binomial RVs

- Let X and Y be independent random variables
 - $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$
 - $X + Y \sim \text{Bin}(n_1 + n_2, p)$
- Intuition:
 - X has n_1 trials and Y has n_2 trials
 - Each trial has same “success” probability p
 - Define Z to be $n_1 + n_2$ trials, each with success prob. p
 - $Z \sim \text{Bin}(n_1 + n_2, p)$, and also $Z = X + Y$
- More generally: $X_i \sim \text{Bin}(n_i, p)$ for $1 \leq i \leq N$
 \[
 \left(\sum_{i=1}^{N} X_i \right) \sim \text{Bin}\left(\sum_{i=1}^{N} n_i, p \right)
 \]
Sum of Independent Poisson RVs

- Let X and Y be independent random variables
 - $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$
 - $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$

- **Proof:** (just for reference)
 - Rewrite $(X + Y = n)$ as $(X = k, Y = n - k)$ where $0 \leq k \leq n$

\[
P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k) = \sum_{k=0}^{n} P(X = k)P(Y = n - k)
\]

\[
= \sum_{k=0}^{n} e^{-\lambda_1} \frac{\lambda_1^k}{k!} e^{-\lambda_2} \frac{\lambda_2^{n-k}}{(n-k)!} = e^{-(\lambda_1 + \lambda_2)} \sum_{k=0}^{n} \frac{\lambda_1^k \lambda_2^{n-k}}{k!(n-k)!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}
\]

- Noting Binomial theorem: $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$

- $P(X + Y = n) = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n$ so, $X + Y = n \sim \text{Poi}(\lambda_1 + \lambda_2)$
Reference: Sum of Independent RVs

• Let X and Y be independent Binomial RVs
 - $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$
 - $X + Y \sim \text{Bin}(n_1 + n_2, p)$
 - More generally, let $X_i \sim \text{Bin}(n_i, p)$ for $1 \leq i \leq N$, then
 \[
 \left(\sum_{i=1}^{N} X_i \right) \sim \text{Bin}\left(\sum_{i=1}^{N} n_i, p \right)
 \]

• Let X and Y be independent Poisson RVs
 - $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$
 - $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$
 - More generally, let $X_i \sim \text{Poi}(\lambda_i)$ for $1 \leq i \leq N$, then
 \[
 \left(\sum_{i=1}^{N} X_i \right) \sim \text{Poi}\left(\sum_{i=1}^{N} \lambda_i \right)
 \]
Dance, Dance, Convolution

- Let X and Y be independent random variables
 - Cumulative Distribution Function (CDF) of X + Y:
 \[F_{X+Y}(a) = P(X + Y \leq a) \]
 \[= \iint_{x+y \leq a} f_X(x)f_Y(y) \, dx \, dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{a-y} f_X(x) \, dx \, f_Y(y) \, dy \]
 \[= \int_{y=-\infty}^{\infty} F_X(a-y) \, f_Y(y) \, dy \]
 - \(F_{X+Y} \) is called \textit{convolution} of \(F_X \) and \(F_Y \)
 - Probability Density Function (PDF) of X + Y, analogous:
 \[f_{X+Y}(a) = \int_{y=-\infty}^{\infty} f_X(a-y) \, f_Y(y) \, dy \]
 - In discrete case, replace \(\int \) with \(\sum \), and \(f(y) \) with \(p(y) \)
Sum of Independent Uniform RVs

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \implies f(x) = 1$ for $0 \leq x \leq 1$
 - What is PDF of $X + Y$?

$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) \, dy = \int_{y=0}^{1} f_X(a-y) \, dy$$

- When $0 \leq a \leq 1$ and $0 \leq y \leq a$, $0 \leq a-y \leq 1 \implies f_X(a-y) = 1$

$$f_{X+Y}(a) = \int_{y=0}^{a} dy = a$$

- When $1 \leq a \leq 2$ and $a-1 \leq y \leq 1$, $0 \leq a-y \leq 1 \implies f_X(a-y) = 1$

$$f_{X+Y}(a) = \int_{y=a-1}^{1} dy = 2-a \quad f_{X+Y}(a)$$

- Combining: $f_{X+Y}(a) = \begin{cases}
 a & 0 \leq a \leq 1 \\
 2-a & 1 < a \leq 2 \\
 0 & \text{otherwise}
\end{cases}$
Sum of Independent Normal RVs

• Let X and Y be independent random variables
 - $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

• Generally, have n independent random variables $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, ..., n$:

$$
\left(\sum_{i=1}^{n} X_i \right) \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2 \right)
$$
Virus Infections

- Say your RCC checks dorm machines for viruses
 - 50 Macs, each independently infected with \(p = 0.1 \)
 - 100 PCs, each independently infected with \(p = 0.4 \)
 - \(A = \# \) infected Macs \(A \sim \text{Bin}(50, 0.1) \approx X \sim \text{N}(5, 4.5) \)
 - \(B = \# \) infected PCs \(B \sim \text{Bin}(100, 0.4) \approx Y \sim \text{N}(40, 24) \)
 - What is \(P(\geq 40 \text{ machine infected}) \)?
 - \(P(A + B \geq 40) \approx P(X + Y \geq 39.5) \)
 - \(X + Y = W \sim \text{N}(5 + 40 = 45, 4.5 + 24 = 28.5) \)

\[
P(W \geq 39.5) = P\left(\frac{W - 45}{\sqrt{28.5}} > \frac{39.5 - 45}{\sqrt{28.5}} \right) = 1 - \Phi(-1.03) \approx 0.8485\]
Discrete Conditional Distributions

- Recall that for events E and F:

$$P(E \mid F) = \frac{P(EF)}{P(F)} \quad \text{where} \quad P(F) > 0$$

- Now, have X and Y as discrete random variables
 - Conditional PMF of X given Y (where $p_Y(y) > 0$):
 $$P_{X \mid Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$
 - Conditional CDF of X given Y (where $p_Y(y) > 0$):
 $$F_{X \mid Y}(a \mid y) = P(X \leq a \mid Y = y) = \frac{P(X \leq a, Y = y)}{P(Y = y)} = \frac{\sum_{x \leq a} p_{X,Y}(x, y)}{p_Y(y)} = \sum_{x \leq a} p_{X \mid Y}(x \mid y)$$
Operating System Loyalty

- Consider person buying 2 computers (over time)
 - $X = 1$st computer bought is a PC (1 if it is, 0 if it is not)
 - $Y = 2$nd computer bought is a PC (1 if it is, 0 if it is not)
 - Joint probability mass function (PMF):
 - What is $P(Y = 0 \mid X = 0)$?
 $$P(Y = 0 \mid X = 0) = \frac{p_{X,Y}(0,0)}{p_X(0)} = \frac{0.2}{0.3} = \frac{2}{3}$$
 - What is $P(Y = 1 \mid X = 0)$?
 $$P(Y = 1 \mid X = 0) = \frac{p_{X,Y}(0,1)}{p_X(0)} = \frac{0.1}{0.3} = \frac{1}{3}$$
 - What is $P(X = 0 \mid Y = 1)$?
 $$P(X = 0 \mid Y = 1) = \frac{p_{X,Y}(0,1)}{p_Y(1)} = \frac{0.1}{0.5} = \frac{1}{5}$$
And It Applies to Books Too…

P(Buy Book Y | Bought Book X)
Web Server Requests Redux

- Requests received at web server in a day
 - \(X = \# \) requests from humans/day \(X \sim \text{Poi}(\lambda_1) \)
 - \(Y = \# \) requests from bots/day \(Y \sim \text{Poi}(\lambda_2) \)
 - \(X \) and \(Y \) are independent \(\Rightarrow X + Y \sim \text{Poi}(\lambda_1 + \lambda_2) \)
 - What is \(P(X = k \mid X + Y = n) \)?

\[
P(X = k \mid X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}
\]

\[
= \frac{e^{-\lambda_1} \lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n-k)!} \cdot \frac{n!}{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^n} = \frac{n!}{k!(n-k)!} \cdot \frac{\lambda_1^k \lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}
\]

\[
= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-k}
\]

- \(X \mid X + Y \sim \text{Bin} \left(X + Y, \frac{\lambda_1}{\lambda_1 + \lambda_2} \right) \)
Continuous Conditional Distributions

- Let X and Y be continuous random variables
 - Conditional PDF of X given Y (where $f_Y(y) > 0$):

 $$ f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} $$

 $$ f_{X|Y}(x \mid y) \ dx = \frac{f_{X,Y}(x, y) \ dx \ dy}{f_Y(y) \ dy} $$

 $$ \approx \frac{P(x \leq X \leq x + dx, y \leq Y \leq y + dy)}{P(y \leq Y \leq y + dy)} = P(x \leq X \leq x + dx \mid y \leq Y \leq y + dy) $$
 - Conditional CDF of X given Y (where $f_Y(y) > 0$):

 $$ F_{X|Y}(a \mid y) = P(X \leq a \mid Y = y) = \int_{-\infty}^{a} f_{X|Y}(x \mid y) \ dx $$
 - Note: Even though $P(Y = a) = 0$, can condition on $Y = a$
 - Really considering: $P(a - \frac{\varepsilon}{2} \leq Y \leq a + \frac{\varepsilon}{2}) = \int_{a-\frac{\varepsilon}{2}}^{a+\frac{\varepsilon}{2}} f_Y(y) \ dy \approx \varepsilon f(a)$
Let’s Do an Example

• X and Y are continuous RVs with PDF:

 \[f(x, y) = \begin{cases} \frac{12}{5} x(2 - x - y) & \text{where } 0 < x, y < 1 \\ 0 & \text{otherwise} \end{cases} \]

• Compute conditional density: \(f_{X|Y}(x \mid y) \)

 \[
 f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} = \frac{f_{X,Y}(x, y)}{\int_0^1 f_{X,Y}(x, y) \, dx}
 = \frac{\frac{12}{5} x(2 - x - y)}{\int_0^1 \frac{12}{5} x(2 - x - y) \, dx}
 = \frac{x(2 - x - y)}{\frac{2}{3}\frac{y}{2}} = \frac{6x(2 - x - y)}{4 - 3y}
 \]