Viva La Correlación!

• Say X and Y are arbitrary random variables
 ▪ Correlation of X and Y, denoted ρ(X, Y):
 \[ρ(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}} \]
 ▪ Note: -1 ≤ ρ(X, Y) ≤ 1
 ▪ Correlation measures **linearity** between X and Y
 ▪ ρ(X, Y) = 1 \(\Rightarrow\) Y = aX + b where a = σ_y/σ_x
 ▪ ρ(X, Y) = -1 \(\Rightarrow\) Y = aX + b where a = -σ_y/σ_x
 ▪ ρ(X, Y) = 0 \(\Rightarrow\) absence of **linear** relationship
 ○ But, X and Y can still be related in some other way!
 ▪ If ρ(X, Y) = 0, we say X and Y are “uncorrelated”
 ○ Note: Independence implies uncorrelated, but **not** vice versa!
Fun with Indicator Variables

- Let I_A and I_B be indicators for events A and B

\[
I_A = \begin{cases}
1 & \text{if A occurs} \\
0 & \text{otherwise}
\end{cases} \quad I_B = \begin{cases}
1 & \text{if B occurs} \\
0 & \text{otherwise}
\end{cases}
\]

- $E[I_A] = P(A)$, $E[I_B] = P(B)$, $E[I_A I_B] = P(AB)$

- $\text{Cov}(I_A, I_B) = E[I_A I_B] - E[I_A] E[I_B]$

\[
= P(AB) - P(A)P(B)
= P(A | B)P(B) - P(A)P(B)
= P(B)[P(A | B) - P(A)]
\]

- $\text{Cov}(I_A, I_B)$ determined by $P(A | B) - P(A)$

- $P(A | B) > P(A) \implies \rho(I_A, I_B) > 0$

- $P(A | B) = P(A) \implies \rho(I_A, I_B) = 0$ (and $\text{Cov}(I_A, I_B) = 0$)

- $P(A | B) < P(A) \implies \rho(I_A, I_B) < 0$
Can’t Get Enough of that Multinomial

- **Multinomial distribution**
 - n independent trials of experiment performed
 - Each trials results in one of m outcomes, with respective probabilities: p_1, p_2, \ldots, p_m where $\sum_{i=1}^{m} p_i = 1$
 - $X_i =$ number of trials with outcome i

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \ldots p_m^{c_m}$$

- E.g., Rolling 6-sided die multiple times and counting how many of each value \{1, 2, 3, 4, 5, 6\} we get
- Would expect that X_i are negatively correlated
- Let’s see... when $i \neq j$, what is $\text{Cov}(X_i, X_j)$?
Covariance and the Multinomial

- Computing $\text{Cov}(X_i, X_j)$
 - Indicator $I_i(k) = 1$ if trial k has outcome i, 0 otherwise
 \[
 E[I_i(k)] = p_i \quad X_i = \sum_{k=1}^{n} I_i(k) \quad X_j = \sum_{k=1}^{n} I_j(k)
 \]
 - $\text{Cov}(X_i, X_j) = \sum_{a=1}^{n} \sum_{b=1}^{n} \text{Cov}(I_i(b), I_j(a))$
 - When $a \neq b$, trial a and b independent: $\text{Cov}(I_i(b), I_j(a)) = 0$
 - When $a = b$: $\text{Cov}(I_i(b), I_j(a)) = E[I_i(a)I_j(a)] - E[I_i(a)]E[I_j(a)]$
 - Since trial a cannot have outcome i and j: $E[I_i(a)I_j(a)] = 0$
 \[
 \text{Cov}(X_i, X_j) = \sum_{a=b=1}^{n} \text{Cov}(I_i(b), I_j(a)) = \sum_{a=1}^{n} (-E[I_i(a)]E[I_j(a)])
 \]
 \[
 = \sum_{a=1}^{n} (-p_i p_j) = -np_i p_j \quad \Rightarrow \quad X_i \text{ and } X_j \text{ negatively correlated}
 \]
Multinomials All Around

- Multinomial distributions:
 - Count of strings hashed into buckets in hash table
 - Number of server requests across machines in cluster
 - Distribution of words/tokens in an email
 - Etc.

- When m (# outcomes) is large, p_i is small
 - For equally likely outcomes: $p_i = 1/m$
 \[
 \text{Cov}(X_i, X_j) = -np_ip_j = -\frac{n}{m^2}
 \]
 - Large $m \Rightarrow X_i$ and X_j very mildly negatively correlated
 - Poisson paradigm applicable