Genetic Inheritance (Binomial review)

• Person has 2 genes for trait (eye color)
 ▪ Child receives 1 gene (equally likely) from each parent
 ▪ Child has brown eyes if either (or both) genes brown
 ▪ Child only has blue eyes if both genes blue
 ▪ Brown is “dominant” (d), Blue is “recessive” (r)
 ▪ Parents each have 1 brown and 1 blue gene

• 4 children, what is P(3 children with brown eyes)?
 ▪ Child has blue eyes: \(p = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{4} \) (2 blue genes)
 ▪ \(P(\text{child has brown eyes}) = 1 - \left(\frac{1}{4} \right) = 0.75 \)
 ▪ \(X = \# \) of children with brown eyes. \(X \sim \text{Bin}(4, 0.75) \)

\[
P(X = 3) = \binom{4}{3} (0.75)^3 (0.25)^1 \approx 0.4219
\]
Whither the Binomial…

• Recall example of sending bit string over network
 - $n = 4$ bits sent over network where each bit had independent probability of corruption $p = 0.1$
 - $X =$ number of bits corrupted. $X \sim \text{Bin}(4, 0.1)$
 - In real networks, send large bit strings (length $n \approx 10^4$)
 - Probability of bit corruption is very small $p \approx 10^{-6}$
 - $X \sim \text{Bin}(10^4, 10^{-6})$ is unwieldy to compute

• Extreme n and p values arise in many cases
 - # bit errors in file written to disk (# of typos in a book)
 - # of elements in particular bucket of large hash table
 - # of servers crashes in a day in giant data center
 - # Facebook login requests that go to particular server
Binomial in the Limit

• Recall the Binomial distribution

\[P(X = i) = \frac{n!}{i!(n-i)!} p^i (1 - p)^{n-i} \]

• Let \(\lambda = np \) (equivalently: \(p = \lambda/n \))

\[P(X = i) = \frac{n!}{i!(n-i)!} \left(\frac{\lambda}{n} \right)^i \left(1 - \frac{\lambda}{n} \right)^{n-i} = \frac{n(n-1)...(n-i+1)}{n^i} \frac{\lambda^i}{i!} \frac{(1-\lambda/n)^n}{(1-\lambda/n)^i} \]

• When \(n \) is large, \(p \) is small, and \(\lambda \) is “moderate”:

\[\frac{n(n-1)...(n-i+1)}{n^i} \approx 1 \quad (1-\lambda/n)^n \approx e^{-\lambda} \quad (1-\lambda/n)^i \approx 1 \]

• Yielding:

\[P(X = i) \approx 1 \frac{\lambda^i e^{-\lambda}}{i!} = \frac{\lambda^i}{i!} e^{-\lambda} \]
Poisson Random Variable

• X is a **Poisson** Random Variable: \(X \sim \text{Poi}(\lambda) \)
 - X takes on values 0, 1, 2…
 - and, for a given parameter \(\lambda > 0 \),
 - has distribution (PMF):
 \[
 P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}
 \]

• Note Taylor series:
 \[
 e^\lambda = \frac{\lambda^0}{0!} + \frac{\lambda^1}{1!} + \frac{\lambda^2}{2!} + \ldots = \sum_{i=0}^{\infty} \frac{\lambda^i}{i!}
 \]

• So:
 \[
 \sum_{i=0}^{\infty} P(X = i) = \sum_{i=0}^{\infty} e^{-\lambda} \frac{\lambda^i}{i!} = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{-\lambda} e^\lambda = 1
 \]
Sending Data on Network Redux

• Recall example of sending bit string over network
 ▪ Send bit string of length $n = 10^4$
 ▪ Probability of (independent) bit corruption $p = 10^{-6}$
 ▪ $X \sim \text{Poi}(\lambda = 10^4 \times 10^{-6} = 0.01)$
 ▪ What is probability that message arrives uncorrupted?

$$P(X = 0) = e^{-\lambda} \frac{\lambda^i}{i!} = e^{-0.01} \frac{(0.01)^0}{0!} \approx 0.990049834$$

• Using $Y \sim \text{Bin}(10^4, 10^{-6})$:

$$P(Y = 0) \approx 0.990049829$$

Caveat emptor: Binomial computed with built-in function in R software package, so some approximations may have occurred. Approximations are closer to you than they may appear in some software packages.
Simeon-Denis Poisson

- Simeon-Denis Poisson (1781-1840) was a prolific French mathematician
 - Published his first paper at 18, became professor at 21, and published over 300 papers in his life
 - He reportedly said “Life is good for only two things, discovering mathematics and teaching mathematics.”
 - Definitely did not look like Charlie Sheen
Poisson is Binomial in Limit

- Poisson approximates Binomial where \(n \) is large, \(p \) is small, and \(\lambda = np \) is “moderate”
- Different interpretations of "moderate"
 - \(n > 20 \) and \(p < 0.05 \)
 - \(n > 100 \) and \(p < 0.1 \)
- Really, Poisson is Binomial as
 \[
n \to \infty \text{ and } p \to 0, \text{ where } np = \lambda
\]
Bin(10, 0.3), Bin(100, 0.03) vs. Poi(3)
A Real License Plate Seen at Stanford

No, it’s not mine…
but I kind of wish it was.
Tender (Central) Moments with Poisson

- Recall: \(Y \sim \text{Bin}(n, p) \)
 - \(E[Y] = np \)
 - \(\text{Var}(Y) = np(1 - p) \)

- \(X \sim \text{Poi}(\lambda) \) where \(\lambda = np \) \((n \to \infty \text{ and } p \to 0) \)
 - \(E[X] = np = \lambda \)
 - \(\text{Var}(X) = np(1 - p) = \lambda(1 - 0) = \lambda \)
 - Yes, expectation and variance of Poisson are same
 - It brings a tear to my eye…

- Recall: \(\text{Var}(X) = E[X^2] - (E[X])^2 \)
 - \(E[X^2] = \text{Var}(X) + (E[X])^2 = \lambda + \lambda^2 = \lambda(1 + \lambda) \)
It’s Really All About Raisin Cake

• Bake a cake using many raisins and lots of batter
• Cake is enormous (in fact, infinitely so…)
 • Cut slices of “moderate” size (w.r.t. # raisins/slice)
 • Probability p that a particular raisin is in a certain slice is very small ($p = 1/#$ cake slices)
• Let $X = \text{number of raisins in a certain cake slice}$
• $X \sim \text{Poi}(\lambda)$, where $\lambda = \frac{\text{total \# raisins}}{\# \text{ cake slices}}$
CS = Baking Raisin Cake With Code

- **Hash tables**
 - strings = raisins
 - buckets = cake slices
- **Server crashes in data center**
 - servers = raisins
 - list of crashed machines = particular slice of cake
- **Facebook login requests** (i.e., web server requests)
 - requests = raisins
 - server receiving request = cake slice
Defective Chips

- Computer chips are produced
 - $p = 0.1$ that a chip is defective (chips are independent)
 - Consider a sample of $n = 10$ chips
 - What is $P(\text{sample contains } \leq 1 \text{ defective chip})$?
 - Let $Y = \text{number of defective chips in sample}$
 - Using $Y \sim \text{Bin}(10, 0.1)$. $P(Y \leq 1) = P(Y = 0) + P(Y = 1)$

$$P(Y \leq 1) = \begin{pmatrix} 10 \\ 0 \end{pmatrix} (0.1)^0 (1-0.1)^{10} + \begin{pmatrix} 10 \\ 1 \end{pmatrix} (0.1)^1 (1-0.1)^{9} \approx 0.7361$$

- Using $X \sim \text{Poi} (\lambda = (0.1)(10) = 1)$

$$P(X \leq 1) = e^{-1} \frac{1^0}{0!} + e^{-1} \frac{1^1}{1!} = 2e^{-1} \approx 0.7358$$
Approximately Poisson Approximation

• Poisson can still provide a good approximation even when assumptions are “mildly” violated
• “Poisson Paradigm”
• Can apply Poisson approximation when...
 ▪ “Successes” in trials are not entirely independent
 ○ Example: # entries in each bucket in large hash table
 ▪ Probability of “Success” in each trial varies (slightly)
 ○ Small relative change in a very small p
 ○ Example: average # requests to web server/sec. may fluctuate slightly due to load on network
Birthday Problem Redux

- What is the probability that of m people, none share the same birthday (regardless of year)?
 - $n = \binom{m}{2}$ trials, one for each pair of people (x, y), $x \neq y$
 - Let $E_{x,y} = x$ and y have same birthday (trial success)
 - $P(E_{x,y}) = \rho = 1/365$ (note: all $E_{x,y}$ not independent)
 - $X \sim \text{Poi}(\lambda)$ where $\lambda = \binom{m}{2} \frac{1}{365} = \frac{m(m-1)}{730}$

$$
\begin{align*}
P(X = 0) &= e^{-m(m-1)/730} \frac{(m(m-1)/730)^0}{0!} = e^{-m(m-1)/730} \\
\text{Solve for smallest integer } m, \text{ s.t.: } e^{-m(m-1)/730} &\leq 0.5 \\
\ln(e^{-m(m-1)/730}) &\leq \ln(0.5) \rightarrow m(m-1) \geq -730 \ln(0.5) \rightarrow m \geq 23
\end{align*}
$$
- Same as before!
Poisson Processes

- Consider “rare” events that occur over time
 - Earthquakes, radioactive decay, hits to web server, etc.
 - Have time interval for events (1 year, 1 sec, whatever...)
 - Events arrive at rate: \(\lambda \) events per interval of time
- Split time interval into \(n \to \infty \) sub-intervals
 - Assume at most one event per sub-interval
 - Event occurrences in sub-intervals are independent
 - With many sub-intervals, probability of event occurring in any given sub-interval is small
- \(N(t) = \# \) events in original time interval \(\sim \) Poisson(\(\lambda \))
Web Server Load

• Consider requests to a web server in 1 second
 - In past, server load averages 2 hits/second
 - $X = \#$ hits server receives in a second
 - What is $P(X = 5)$?

• Model
 - Assume server cannot acknowledge > 1 hit/msec.
 - 1 sec = 1000 msec. (= large n)
 - $P($hit server in 1 msec$) = 2/1000$ (= small p)
 - $X \sim \text{Poi}(\lambda = 2)$

\[
P(X = 5) = e^{-2} \frac{2^5}{5!} \approx 0.0361
\]
Geometric Random Variable

- X is **Geometric** Random Variable: \(X \sim \text{Geo}(p) \)
 - X is number of independent trials until first success
 - \(p \) is probability of success on each trial
 - X takes on values 1, 2, 3, …, with probability:
 \[
 P(X = n) = (1 - p)^{n-1} p
 \]
 - \(E[X] = 1/p \quad \text{Var}(X) = (1 - p)/p^2 \)

- Examples:
 - Flipping a coin (P(heads) = \(p \)) until first heads appears
 - Urn with N black and M white balls. Draw balls (with replacement, \(p = N/(N + M) \)) until draw first black ball
 - Generate bits with P(bit = 1) = \(p \) until first 1 generated
Negative Binomial Random Variable

- **X** is **Negative Binomial** RV: $X \sim \text{NegBin}(r, p)$
 - X is number of independent trials until r successes
 - p is probability of success on each trial
 - X takes on values $r, r + 1, r + 2\ldots$, with probability:
 $$P(X = n) = \binom{n-1}{r-1} p^r (1-p)^{n-r}, \text{ where } n = r, r+1,\ldots$$
 - $E[X] = r/p \quad \text{Var}(X) = r(1-p)/p^2$

- Note: $\text{Geo}(p) \sim \text{NegBin}(1, p)$

- Examples:
 - # of coin flips until r-th “heads” appears
 - # of strings to hash into table until bucket 1 has r entries
Hypergeometric Random Variable

- **X** is **Hypergeometric** RV: \(X \sim \text{HypG}(n, N, m) \)
 - Urn with \(N \) balls: \(m \) white and \((N - m) \) black
 - Draw \(n \) balls **without** replacement
 - \(X \) is number of white balls drawn

 \[
P(X = i) = \binom{m}{i} \frac{(N - m)}{\binom{n}{n-i}} \binom{N}{n}, \text{ where } i = 0, 1, \ldots, n
 \]

 - \(\mathbb{E}[X] = n(m/N) \quad \text{Var}(X) = \frac{nm(N - n)(N - m)}{[N^2(N - 1)]} \)
 - Let \(\rho = m/N \) (probability of drawing white on 1st draw)

- Note: \(\text{HypG}(n, N, m) \rightarrow \text{Bin}(n, m/N) \)
 - As \(N \rightarrow \infty \) and \(m/N \) remains constant
Endangered Species

• Determine $N = \text{how many of some species remain}$
 - Randomly tag m of species (e.g., with white paint)
 - Allow animals to mix randomly (assuming no breeding)
 - Later, randomly observe another n of the species
 - $X = \text{number of tagged animals in observed group of } n$
 - $X \sim \text{HypG}(n, N, m)$

• “Maximum Likelihood” estimate
 - Set N to be value that maximizes:
 $P(X = i) = \binom{m}{i} \binom{N-m}{n-i} \binom{N}{n}$
 for the value i of X that you observed $\rightarrow \hat{N} = mn/i$

• Similar to assuming: $i = E[X] = nm/N$