Recall the Expected Value

- The Expected Values for a discrete random variable X is defined as:

$$E[X] = \sum_{x:p(x)>0} x \cdot p(x)$$
Lying With Statistics

“There are three kinds of lies: lies, damned lies, and statistics”

– Mark Twain

• School has 3 classes with 5, 10 and 150 students
• Randomly choose a class with equal probability
• $X =$ size of chosen class
• What is $E[X]$?
 • $E[X] = 5 \cdot \frac{1}{3} + 10 \cdot \frac{1}{3} + 150 \cdot \frac{1}{3}$
 $$= \frac{165}{3} = 55$$
Lying With Statistics

“There are three kinds of lies: lies, damned lies, and statistics”
– Mark Twain

• School has 3 classes with 5, 10 and 150 students
• Randomly choose a student with equal probability
• Y = size of class that student is in
• What is \(E[Y] \)?
 \[E[Y] = 5 \left(\frac{5}{165} \right) + 10 \left(\frac{10}{165} \right) + 150 \left(\frac{150}{165} \right) \]
 \[= \frac{22635}{165} \approx 137 \]
• Note: \(E[Y] \) is students’ perception of class size
 • But \(E[X] \) is what is usually reported by schools!
Expectation of a Random Variable

- Let $Y = g(X)$, where g is real-valued function

$$E[g(X)] = E[Y] = \sum_j y_j p(y_j)$$

$$= \sum_j y_j \sum_{i: g(x_i) = y_j} p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} y_j p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} g(x_i) p(x_i)$$

$$= \sum_i g(x_i) p(x_i)$$
Other Properties of Expectations

- **Linearity:**
 \[E[aX + b] = aE[X] + b \]
 - Consider \(X = 6 \)-sided die roll, \(Y = 2X - 1 \).
 - \(E[X] = 3.5 \quad E[Y] = 6 \)

- **N-th Moment of \(X \):**
 \[E[X^n] = \sum_{x : p(x) > 0} x^n p(x) \]
 - We’ll see the 2\(^{nd}\) moment soon...
Utility

- Utility is value of some choice
 - 2 choices, each with n consequences: c_1, c_2, \ldots, c_n
 - One of c_i will occur with probability p_i
 - Each consequence has some value (utility): $U(c_i)$
 - Which choice do you make?

- Example: Buy a 1 lottery ticket (for 1M prize)?
 - Probability of winning is $1/10^7$
 - **Buy**: $c_1 = \text{win}, c_2 = \text{lose}, U(c_1) = 10^6 - 1, U(c_2) = -1$
 - **Don’t Buy**: $c_1 = \text{lose}, U(c_1) = 0$
 - $E(\text{buy}) = 1/10^7 (10^6 - 1) + (1 - 1/10^7) (-1) \approx -0.9$
 - $E(\text{don’t buy}) = 1 (0) = 0$
 - “You can’t lose if you don’t play!”
And Then There’s This…

Lottery: A tax on people who are bad at math.
– Ambrose Bierce
Welcome to St. Petersburg!

- **Game set-up**
 - We have a fair coin (come up “heads” with \(p = 0.5 \))
 - Let \(n \) = number of coin flips (“heads”) before first “tails”
 - You win \(2^n \)

- **How much would you pay to play?**

- **Solution**
 - Let \(X = \) your winnings
 - \[
 E[X] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \left(\frac{1}{2}\right)^4 2^3 + \ldots = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^i
 \]
 - \[
 = \sum_{i=0}^{\infty} \frac{1}{2} = \infty
 \]
 - I’ll let you play for $1 million... but just once! Takers?
Breaking Vegas

- Consider even money bet (e.g., bet “Red” in roulette)
 - \(p = \frac{18}{38} \) you win $Y, otherwise \((1 - p)\) you lose $Y
 - Consider this algorithm for one series of bets:
 1. \(Y = $1 \)
 2. Bet \(Y \)
 3. If Win then stop
 4. If Loss then \(Y = 2 \times Y \), goto 2

- Let \(Z = \) winnings upon stopping

\[
E[Z] = \left(\frac{18}{38} \right)^1 + \left(\frac{20}{38} \right) \left(\frac{18}{38} \right) (2 - 1) + \left(\frac{20}{38} \right)^2 \left(\frac{18}{38} \right) (4 - 2 - 1) + \ldots
\]

\[
= \sum_{i=0}^{\infty} \left(\frac{20}{38} \right)^i \left(\frac{18}{38} \right) \left(2^i - \sum_{j=0}^{i-1} 2^j \right) = \left(\frac{18}{38} \right) \sum_{i=0}^{\infty} \left(\frac{20}{38} \right)^i = \left(\frac{18}{38} \right) \frac{1}{1 - \frac{20}{38}} = 1
\]

- Expected winnings \(\geq 0 \). Use algorithm infinitely often!
Vegas Breaks You

• Why doesn’t everyone do this?
 ▪ Real games have maximum bet amounts
 ▪ You have finite money
 o Not able to keep doubling bet beyond certain point
 ▪ Casinos can kick you out

• But, if you had:
 ▪ No betting limits, and
 ▪ Infinite money, and
 ▪ Could play as often as you want...

• Then, go for it!
 ▪ And tell me which planet you are living on
Variance

• Consider the following 3 distributions (PMFs)

- All have the same expected value, \(E[X] = 3 \)
- But “spread” in distributions is different
- Variance = a formal quantification of “spread”
Variance

• If X is a random variable with mean μ then the variance of X, denoted $\text{Var}(X)$, is:

$$\text{Var}(X) = E[(X - \mu)^2]$$

• Note: $\text{Var}(X) \geq 0$

• Also known as the 2nd Central Moment, or square of the Standard Deviation
Computing Variance

\[\text{Var}(X) = E[(X - \mu)^2] \]
\[= \sum_x (x - \mu)^2 p(x) \]
\[= \sum_x (x^2 - 2\mu x + \mu^2) p(x) \]
\[= \sum_x x^2 p(x) - 2\mu \sum_x xp(x) + \mu^2 \sum_x p(x) \]
\[= \boxed{E[X^2]} - 2\mu E[X] + \mu^2 \]
\[= E[X^2] - 2\mu^2 + \mu^2 \]
\[= E[X^2] - \mu^2 \]
\[= E[X^2] - (E[X])^2 \]

Say hello to my little friend, the 2nd moment!
Variance of 6 Sided Die

• Let $X =$ value on roll of 6 sided die
• Recall that $E[X] = 7/2$
• Compute $E[X^2]$

\[
E[X^2] = \left(1^2\right)\frac{1}{6} + \left(2^2\right)\frac{1}{6} + \left(3^2\right)\frac{1}{6} + \left(4^2\right)\frac{1}{6} + \left(5^2\right)\frac{1}{6} + \left(6^2\right)\frac{1}{6} = \frac{91}{6}
\]

$Var(X) = E[X^2] - (E[X])^2$

\[
= \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}
\]
Properties of Variance

• \(\text{Var}(aX + b) = a^2 \text{Var}(X) \)
 - Proof:
 \[
 \text{Var}(aX + b) = E[(aX + b)^2] - (E[aX + b])^2
 = E[a^2X^2 + 2abX + b^2] - (aE[X] + b)^2
 = a^2E[X^2] + 2abE[X] + b^2 - (a^2(E[X])^2 + 2abE[X] + b^2)
 = a^2E[X^2] - a^2(E[X])^2 = a^2(E[X^2] - (E[X])^2)
 = a^2 \text{Var}(X)
 \]

• Standard Deviation of \(X \), denoted SD(\(X \)), is:
 \[
 \text{SD}(X) = \sqrt{\text{Var}(X)}
 \]
 - Var(\(X \)) is in units of \(X^2 \)
 - SD(\(X \)) is in same units as \(X \)
Jacob Bernoulli

- Jacob Bernoulli (1654-1705), also known as “James”, was a Swiss mathematician
- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him
- He is my academic great-grandfather
- Resemblance to Charlie Sheen weak at best
Bernoulli Random Variable

- Experiment results in “Success” or “Failure”
 - X is random indicator variable ($1 = \text{success}, 0 = \text{failure}$)
 - $P(X = 1) = p(1) = p$ $P(X = 0) = p(0) = 1 - p$
 - X is a **Bernoulli** Random Variable: $X \sim \text{Ber}(p)$
 - $E[X] = p$
 - $\text{Var}(X) = p(1 - p)$

- Examples
 - coin flip
 - random binary digit
 - whether a disk drive crashed
Binomial Random Variable

- Consider n independent trials of $\text{Ber}(p)$ random variable.
 - X is number of successes in n trials
 - X is a **Binomial** Random Variable: $X \sim \text{Bin}(n, p)$

\[
P(X = i) = p(i) = \binom{n}{i} p^i (1 - p)^{n-i} \quad i = 0, 1, ..., n
\]

- By Binomial Theorem, we know that \(\sum_{i=0}^{\infty} P(X = i) = 1\)

- **Examples**
 - # of heads in n coin flips
 - # of 1’s in randomly generated length n bit string
 - # of disk drives crashed in 1000 computer cluster
 o Assuming disks crash independently
Three Coin Flips

- Three fair ("heads" with $p = 0.5$) coins are flipped
 - X is number of heads
 - $X \sim \text{Bin}(3, 0.5)$

$$P(X = 0) = \binom{3}{0} p^0 (1 - p)^3 = \frac{1}{8}$$

$$P(X = 1) = \binom{3}{1} p^1 (1 - p)^2 = \frac{3}{8}$$

$$P(X = 2) = \binom{3}{2} p^2 (1 - p)^1 = \frac{3}{8}$$

$$P(X = 3) = \binom{3}{3} p^3 (1 - p)^0 = \frac{1}{8}$$
PMF for $X \sim \text{Bin}(10, 0.5)$
PMF for $X \sim \text{Bin}(10, 0.3)$
Error Correcting Codes

- Error correcting codes
 - Have original 4 bit string to send over network
 - Add 3 “parity” bits, and send 7 bits total
 - Each bit independently corrupted (flipped) in transition with probability 0.1
 - $X =$ number of bits corrupted: $X \sim \text{Bin}(7, 0.1)$
 - But, parity bits allow us to correct at most 1 bit error

- $P(\text{a correctable message is received})$?
 - $P(X = 0) + P(X = 1)$
Error Correcting Codes (cont)

- Using error correcting codes: \(X \sim \text{Bin}(7, 0.1) \)

\[
P(X = 0) = \binom{7}{0} (0.1)^0 (0.9)^7 \approx 0.4783
\]

\[
P(X = 1) = \binom{7}{1} (0.1)^1 (0.9)^6 \approx 0.3720
\]

- \(P(X = 0) + P(X = 1) = 0.8503 \)

- What if we didn’t use error correcting codes?
 - \(X \sim \text{Bin}(4, 0.1) \)

 - \(P(\text{correct message received}) = P(X = 0) \)

\[
P(X = 0) = \binom{4}{0} (0.1)^0 (0.9)^4 = 0.6561
\]

- Using error correction improves reliability \(\sim 30\% \)!
Properties of Bin(n, p)

- Consider: $X \sim \text{Bin}(n, p)$
- $E[X] = np$
- $\text{Var}(X) = np(1 - p)$
- So, to compute $E[X^2]$, we have:

 $$
 \text{Var}(X) = E[X^2] - (E[X])^2 \\
 E[X^2] = \text{Var}(X) + (E[X])^2 \\
 = np(1 - p) + (np)^2 \\
 = n^2p^2 - np^2 + np
 $$

- Note: $\text{Ber}(p) = \text{Bin}(1, p)$