
CS110 Lecture 10: Signals, Part 1

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-10.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

and Pipes
Signals Race Conditions

Lecture
6/7

Lecture
8/9

This/next
lecture

Lecture
11

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell! 3

Learning Goals
Learn about signals as another way for processes to communicate

Gain practice with how to execute code in our program when we receive a signal

4

Plan For Today
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

5

Plan For Today
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

6

read() Clarifications
read() waits if no bytes are available but they could be written later.

read() doesn't wait if there are bytes available but it's less than we asked for.

7

Pipeline
I/O redirection and pipes allow us to handle piping in our shell: e.g. cat file.txt | sort

0 1 2

Terminal

0 1 2

pipe
READ

cat sort

pipe
WRITE

8

pipeline
Last time, we implemented a custom function called pipeline.

 void pipeline(char *argv1[], char *argv2[], pid_t pids[]);

pipeline is similar to subprocess, except it also spawns a second child and directs its

STDOUT to write to the pipe. Both children should run in parallel.

It doesn't return anything, but it writes the two children PIDs to the specified pids array

9

pipeline-soln.c

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {
 int fds[2];
 pipe(fds);

 // Spawn the first child
 pids[0] = fork();
 if (pids[0] == 0) {
 // The first child's STDOUT should be the write end of the pipe
 close(fds[0]);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 execvp(argv1[0], argv1);
 }

 // We no longer need the write end of the pipe
 close(fds[1]);

 // Spawn the second child
 pids[1] = fork();
 if (pids[1] == 0) {
 // The second child's STDIN should be the read end of the pipe
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 execvp(argv2[0], argv2);
 }

 // We no longer need the read end of the pipe
 close(fds[0]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 int fds[2];
 pipe(fds);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
2
3

 4
 // Spawn the first child5
 pids[0] = fork();6
 if (pids[0] == 0) {7
 // The first child's STDOUT should be the write end of the pipe8
 close(fds[0]);9
 dup2(fds[1], STDOUT_FILENO);10
 close(fds[1]);11
 execvp(argv1[0], argv1);12
 }13
 14
 // We no longer need the write end of the pipe15
 close(fds[1]);16
 17
 // Spawn the second child18
 pids[1] = fork(); 19
 if (pids[1] == 0) {20
 // The second child's STDIN should be the read end of the pipe21
 dup2(fds[0], STDIN_FILENO);22
 close(fds[0]);23
 execvp(argv2[0], argv2);24
 }25
 26
 // We no longer need the read end of the pipe27
 close(fds[0]);28
}29

 close(fds[0]);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 // Spawn the first child5
 pids[0] = fork();6
 if (pids[0] == 0) {7
 // The first child's STDOUT should be the write end of the pipe8

9
10
11

 execvp(argv1[0], argv1);12
 }13
 14
 // We no longer need the write end of the pipe15
 close(fds[1]);16
 17
 // Spawn the second child18
 pids[1] = fork(); 19
 if (pids[1] == 0) {20
 // The second child's STDIN should be the read end of the pipe21
 dup2(fds[0], STDIN_FILENO);22
 close(fds[0]);23
 execvp(argv2[0], argv2);24
 }25
 26
 // We no longer need the read end of the pipe27
 close(fds[0]);28
}29

 close(fds[1]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 // Spawn the first child5
 pids[0] = fork();6
 if (pids[0] == 0) {7
 // The first child's STDOUT should be the write end of the pipe8
 close(fds[0]);9
 dup2(fds[1], STDOUT_FILENO);10
 close(fds[1]);11
 execvp(argv1[0], argv1);12
 }13
 14
 // We no longer need the write end of the pipe15

16
 17
 // Spawn the second child18
 pids[1] = fork(); 19
 if (pids[1] == 0) {20
 // The second child's STDIN should be the read end of the pipe21
 dup2(fds[0], STDIN_FILENO);22
 close(fds[0]);23
 execvp(argv2[0], argv2);24
 }25
 26
 // We no longer need the read end of the pipe27
 close(fds[0]);28
}29

 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 // Spawn the first child5
 pids[0] = fork();6
 if (pids[0] == 0) {7
 // The first child's STDOUT should be the write end of the pipe8
 close(fds[0]);9
 dup2(fds[1], STDOUT_FILENO);10
 close(fds[1]);11
 execvp(argv1[0], argv1);12
 }13
 14
 // We no longer need the write end of the pipe15
 close(fds[1]);16
 17
 // Spawn the second child18
 pids[1] = fork(); 19
 if (pids[1] == 0) {20
 // The second child's STDIN should be the read end of the pipe21

22
23

 execvp(argv2[0], argv2);24
 }25
 26
 // We no longer need the read end of the pipe27
 close(fds[0]);28
}29
 close(fds[0]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 // Spawn the first child5
 pids[0] = fork();6
 if (pids[0] == 0) {7
 // The first child's STDOUT should be the write end of the pipe8
 close(fds[0]);9
 dup2(fds[1], STDOUT_FILENO);10
 close(fds[1]);11
 execvp(argv1[0], argv1);12
 }13
 14
 // We no longer need the write end of the pipe15
 close(fds[1]);16
 17
 // Spawn the second child18
 pids[1] = fork(); 19
 if (pids[1] == 0) {20
 // The second child's STDIN should be the read end of the pipe21
 dup2(fds[0], STDIN_FILENO);22
 close(fds[0]);23
 execvp(argv2[0], argv2);24
 }25
 26
 // We no longer need the read end of the pipe27

28
}29

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {
 int fds[2];
 pipe(fds);

 // Spawn the first child
 pids[0] = fork();
 if (pids[0] == 0) {
 // The first child's STDOUT should be the write end of the pipe
 close(fds[0]);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 execvp(argv1[0], argv1);
 }

 // We no longer need the write end of the pipe
 close(fds[1]);

 // Spawn the second child
 pids[1] = fork();
 if (pids[1] == 0) {
 // The second child's STDIN should be the read end of the pipe
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 execvp(argv2[0], argv2);
 }

 // We no longer need the read end of the pipe
 close(fds[0]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

10

http://web.stanford.edu/class/cs110/examples/processes/lect9/pipeline-soln.c

pipe2
There were a lot of close() calls! Is there a way for any of them to be done automatically?

int pipe2(int fds[], int flags);

pipe2 is the same as pipe except it lets you customize the pipe with some optional flags.

if flags is 0, it's the same as pipe

if flags is O_CLOEXEC, the pipe FDs will be automatically closed when the surrounding
process calls execvp.

11

pipeline

 close(fds[0]);

 close(fds[1]);

 close(fds[0]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 pids[0] = fork();5
 if (pids[0] == 0) {6

7
 dup2(fds[1], STDOUT_FILENO);8

9
 execvp(argv1[0], argv1);10
 }11
 12
 close(fds[1]);13
 14
 pids[1] = fork(); 15
 if (pids[1] == 0) {16
 dup2(fds[0], STDIN_FILENO);17

18
 execvp(argv2[0], argv2);19
 }20
 21
 close(fds[0]);22
}23

The highlighted calls to

close() would no longer be

necessary if we use pipe2 with

O_CLOEXEC because the

surrounding process for each

calls execvp.

Note that the parent must still

close them because it doesn't

call execvp.

12

pipeline with pipe2
void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {
 int fds[2];
 pipe2(fds, O_CLOEXEC);

 pids[0] = fork();
 if (pids[0] == 0) {
 dup2(fds[1], STDOUT_FILENO);
 execvp(argv1[0], argv1);
 }

 close(fds[1]);

 pids[1] = fork();
 if (pids[1] == 0) {
 dup2(fds[0], STDIN_FILENO);
 execvp(argv2[0], argv2);
 }

 close(fds[0]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

This version of pipeline uses

pipe2 with O_CLOEXEC.

13

Pipes and I/O Redirection: Key Takeaways
Pipes are sets of file descriptors that allow us to communicate across processes.
Processes can share these file descriptors because they are copied on fork()
File descriptors 0,1 and 2 are special and assumed to represent STDIN, STDOUT and
STDERR
If we change those file descriptors to point to other resources, we can redirect
STDIN/STDOUT/STDERR to be something else without the program knowing!
Pipes are how terminal support for piping and redirection (command1 | command2
and command1 > file.txt) are implemented!

14

Plan For Today
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

15

Interprocess Communication
It's useful for a parent process to be able to communicate with its child (and vice

versa)

There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data

Signals let two processes send and receive certain "signals" that indicate

something special has happened. It also allows the operating system to

communicate with a process.

16

Signals
A signal is a way to notify a process that an event has occurred

There is a list of defined signals that can be sent (or you can define your own): SIGINT,

SIGSTOP, SIGKILL, SIGCONT, etc.

A signal is really a number (e.g. SIGINT is 2)

A program can do something in response to a type of signal being received

Signals are sent either by the operating system, or by another process

You can send a signal to yourself or to another process you own

17

Signals
myth$./my-program
Segmentation fault (core dumped)
myth$

A segmentation fault is actually a signal (SIGSEGV) sent from the OS to your program.

triggered when you try to access a memory address not in a valid program segment
default behavior is to terminate the program

18

Signals
Here are some examples of signals:

SIGINT - when you type Ctl-c in the terminal, the kernel sends a SIGINT to the

foreground process group. The default behavior is to terminate.

SIGTSTP - when you type Ctl-z in the terminal, the kernel sends a SIGTSTP to the

foreground process group. The default behavior is to halt it until it is told to continue.

SIGSEGV - when your program attempts to access an invalid memory address, the

kernel sends a SIGSEGV ("seg fault"). The default behavior is to terminate.

19

Process Lifecycle
Running - a process is either executing or waiting to execute

Stopped - a process is suspended due to receiving a SIGSTOP or similar signal. A process

will resume if it receives a SIGCONT signal.

Terminated - a process is permanently stopped, either due to finishing, or receiving a

signal such as SIGSEGV or SIGKILL whose default behavior is to terminate the process.

20

waitpid()
Waitpid can be used to wait on children to terminate or change state:

pid_t waitpid(pid_t pid, int *status, int options);

pid: the PID of the child to wait on, or -1 to wait on any of our children
status: where to put info about the child's status (or NULL)
the return value is the PID of the child that was waited on, -1 on error, or 0 if there are
other children to wait for, but we are not blocking.

The default behavior is to wait for the specified child process to exit. options lets us
customize this further (can combine these flags using |):

WUNTRACED - also wait on a child to be stopped
WCONTINUED - also wait on a child to be continued
WNOHANG - don't block

21

Sending Signals
The operating system sends many signals, but we can also send signals manually.

kill sends the specified signal to the specified process (poorly-named; previously,

default was to just terminate target process)

pid parameter can be > 0 (specify single pid), < -1 (specify process group abs(pid)), or

0/-1 (we ignore these).

raise sends the specified signal to yourself

int kill(pid_t pid, int signum);

// same as kill(getpid(), signum)
int raise(int signum);

22

https://cplayground.com/embed?p=hornet-impala-fly

Parent/Child Ping Pong Example

23

https://cplayground.com/embed?p=hornet-impala-fly

Receiving Signals
There are two main ways we can respond to signals we have received:

add signal handlers to our program: functions that run when a certain signal is received

we can block in our program until a signal is received

Signal handlers are versatile but fraught with potential issues. We will learn about them

to motivate the second approach (blocking until signal is received).

24

Signal Handlers
We can have a function of our choice execute when a certain signal is received.

We must register this "signal handler" with the operating system, and then it will be

called for us.

signum is the signal (e.g. SIGCHLD) we are interested in.

handler is a function pointer for the function to call when this signal is received.

(Note: no handlers allowed for SIGSTOP or SIGKILL)

typedef void (*sighandler_t)(int);
...
sighandler_t signal(int signum, sighandler_t handler);

25

Signal Handlers
static void handleSIGINT(int sig) {
 printf("Sigint received!\n");
}

int main(int argc, char *argv[]) {
 signal(SIGINT, handleSIGINT);
 printf("Just try to interrupt me!\n");
 while (true) {
 sleep(1);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12

 signal(SIGINT, handleSIGINT);

static void handleSIGINT(int sig) {1
 printf("Sigint received!\n");2
}3
 4
int main(int argc, char *argv[]) {5

6
 printf("Just try to interrupt me!\n");7
 while (true) {8
 sleep(1);9
 }10
 return 0;11
}12

static void handleSIGINT(int sig) {
 printf("Sigint received!\n");
}

1
2
3

 4
int main(int argc, char *argv[]) {5
 signal(SIGINT, handleSIGINT);6
 printf("Just try to interrupt me!\n");7
 while (true) {8
 sleep(1);9
 }10
 return 0;11
}12

The handler must be a function that returns nothing and takes in an int (the signal).

A signal handler overrides the default behavior for that signal (if any).

sigint.c
26

http://cs110.stanford.edu/examples/processes/lect10/sigint.c

SIGCHLD
Key insight: when a child changes state, the kernel sends a SIGCHLD signal to its parent.

 This allows the parent to be notified its child has e.g. terminated while doing other
work
we can add a SIGCHLD handler to clean up children without waiting on them in the
parent!

27

Plan For Today
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

28

SIGCHLD Example: Disneyland
Let's write a program where a parent spawns off five children to go play, and does

something else (sleeps 😴) until all the children are done.
static const size_t kNumChildren = 5;

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");

 for (size_t kid = 1; kid <= kNumChildren; kid++) {
 if (fork() == 0) {
 sleep(3 * kid); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 return 0;
 }
 }

 // parent goes and does other work
 snooze(5); // custom fn to sleep uninterrupted

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

five-children-soln.c

Similar to many parallel data
processing applications where
parent does other work while
children are busy
Problem: how do we clean up
the child processes?

29

http://cs110.stanford.edu/examples/processes/lect10/five-children-soln.c

We can add a SIGCHLD handler in
the parent that cleans up the child

that terminated!

30

SIGCHLD Example: Disneyland
static const size_t kNumChildren = 5;
static size_t numChildrenDonePlaying = 0;

static void reapChild(int sig) {
 waitpid(-1, NULL, 0);
 numChildrenDonePlaying++;
}

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");
 signal(SIGCHLD, reapChild);
 for (size_t kid = 1; kid <= kNumChildren; kid++) {
 if (fork() == 0) {
 sleep(3 * kid); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 return 0;
 }
 }

 while (numChildrenDonePlaying < kNumChildren) {
 printf("At least one child still playing, so parent nods off.\n")
 snooze(5); // custom fn to sleep uninterrupted
 printf("Parent wakes up! ");
 }
 printf("All children accounted for. Good job, parent!\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

31

Signal Handlers
A signal can be received at any time, and a signal handler can execute at any time.

Signals aren't handled immediately (there can be delays)

Signal handlers can execute at any point during the program execution (eg. pause

main() execution, execute handler, resume main() execution)

Goal: keep signal handlers simple!

32

SIGCHLD Example: Disneyland
// five-children.c
static const size_t kNumChildren = 5;
static size_t numChildrenDonePlaying = 0;

static void reapChild(int sig) {
 waitpid(-1, NULL, 0);
 numChildrenDonePlaying++;
}

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");
 signal(SIGCHLD, reapChild);
 for (size_t kid = 1; kid <= kNumChildren; kid++) {
 if (fork() == 0) {
 sleep(3); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 return 0;
 }
 }

 while (numChildrenDonePlaying < kNumChildren) {
 printf("At least one child still playing, so parent nods off.\n")
 snooze(5); // custom fn to sleep uninterrupted
 printf("Parent wakes up! ");
 }
 printf("All children accounted for. Good job, parent!\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

 sleep(3); // sleep emulates "play" time

// five-children.c1
static const size_t kNumChildren = 5;2
static size_t numChildrenDonePlaying = 0;3
 4
static void reapChild(int sig) {5
 waitpid(-1, NULL, 0);6
 numChildrenDonePlaying++;7
}8
 9
int main(int argc, char *argv[]) {10
 printf("Let my five children play while I take a nap.\n");11
 signal(SIGCHLD, reapChild);12
 for (size_t kid = 1; kid <= kNumChildren; kid++) {13
 if (fork() == 0) {14

15
 printf("Child #%zu tired... returns to parent.\n", kid);16
 return 0;17
 }18
 }19
 20
 while (numChildrenDonePlaying < kNumChildren) {21
 printf("At least one child still playing, so parent nods off.\n")22
 snooze(5); // custom fn to sleep uninterrupted23
 printf("Parent wakes up! ");24
 } 25
 printf("All children accounted for. Good job, parent!\n");26
 return 0;27
}28

What happens if all children sleep
for the same amount of time? (E.g.

change line 15 from sleep(3 * kid) to
sleep(3)).

33

Plan For Today
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

34

Signal Handlers
Problem: a signal handler is called if one or more signals are sent.

Like a notification that "one or more signals are waiting for you!"

The kernel tracks only what signals should be sent to you, not how many
When we are sleeping, multiple children could terminate, but result in 1 handler call!

Solution: signal handler should clean up as many children as possible.

35

Recap
Revisiting I/O Redirection

Introducing Signals

Demo: Disneyland

Signals Aren't Queued

 Next time: more signal handlers and another approach to signals

36

