
CS110 Lecture 11: Signals, Part 2

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-11.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

and Pipes
Signals Virtual Memory

Lecture
6/7

Lecture
8/9

This
lecture

Lecture
12

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell! 3

Learning Goals
Learn about how to handle SIGCHLD signals to clean up child processes

Get practice writing signal handlers

See the challenges and pitfalls of signal handlers

Learn how to temporarily ignore signals with sigprocmask and wait for signals with

sigwait

4

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

5

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

6

Signals
A signal is a way to notify a process that an event has occurred

There is a list of defined signals that can be sent (or you can define your own): SIGINT,

SIGSTOP, SIGKILL, SIGCONT, etc.

A signal is really a number (e.g. SIGSEGV is 11)

A program can have a function executed when a type of signal is received

Signals are sent either by the operating system, or by another process

e.g. SIGCHLD sent by OS to parent when child changes state

You can send a signal to yourself or to another process you own

7

Some common signals (some 30 types are supported on Linux systems):

Signals

8

Sending Signals
The operating system sends many signals, but we can also send signals manually.

kill sends the specified signal to the specified process (poorly-named; previously,

default for most signals was to just terminate target process)

pid parameter can be > 0 (specify single pid), < -1 (specify process group abs(pid)), or

0/-1 (we ignore these).

raise sends the specified signal to yourself

int kill(pid_t pid, int signum);

// same as kill(getpid(), signum)
int raise(int signum);

9

waitpid()
Waitpid can be used to wait on children to terminate or change state:

pid_t waitpid(pid_t pid, int *status, int options);

pid: the PID of the child to wait on, or -1 to wait on any of our children
status: where to put info about the child's status (or NULL)
the return value is the PID of the child that was waited on, -1 on error, or 0 if there are
other children to wait for, but we are not blocking.

The default behavior is to wait for the specified child process to exit. options lets us
customize this further (can combine these flags using |):

WUNTRACED - also wait on a child to be stopped
WCONTINUED - also wait on a child to be continued
WNOHANG - don't block

10

Signal Handlers
We can have a function of our choice execute when a certain signal is received.

We must register this "signal handler" with the operating system, and then it will be

called for us.

signum is the signal (e.g. SIGCHLD) we are interested in.

handler is a function pointer for the function to call when this signal is received.

(Note: no handlers allowed for SIGSTOP or SIGKILL)

typedef void (*sighandler_t)(int);
...
sighandler_t signal(int signum, sighandler_t handler);

11

Signal Handlers
A signal can be received at any time, and a signal handler can execute at any time.

Signals aren't always handled immediately (there can be delays)

Signal handlers can execute at any point during the program execution (eg. pause

main() execution, execute handler, resume main() execution)

Goal: keep signal handlers simple!

12

Signal Handlers
Signals like SIGSEGV and SIGFPE are called "traps" and are typically sent if there was a

problem with the program. Their signal handlers are called immediately, within the same

time slice, after the offending instruction is executed.

Signals like SIGCHLD and SIGINT are called "interrupts" and are typically sent because

something external to the process occurred. Their signal handlers may not be called

immediately:

Generally invoked at the beginning of the recipient's next time slice.

If the recipient is on the CPU when the signal arrives, it can be executed immediately,

but it's typically deferred until its next time slice begins.

Programs can rarely recover from traps, though may be able to recover from interrupts.

That's why the default handler for most traps is to terminate the process and the default

handler for most interrupts is something else.
13

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

14

SIGCHLD
Key insight: when a child changes state, the kernel sends a SIGCHLD signal to its parent.

 This allows the parent to be notified its child has e.g. terminated while doing other
work
we can add a SIGCHLD handler to clean up children without waiting on them in the
parent!

15

SIGCHLD Example: Disneyland
static const size_t kNumChildren = 5;
static size_t numChildrenDonePlaying = 0;

static void reapChild(int sig) {
 waitpid(-1, NULL, 0);
 numChildrenDonePlaying++;
}

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");
 signal(SIGCHLD, reapChild);
 for (size_t kid = 1; kid <= kNumChildren; kid++) {
 if (fork() == 0) {
 sleep(3 * kid); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 return 0;
 }
 }

 while (numChildrenDonePlaying < kNumChildren) {
 printf("At least one child still playing, so parent nods off.\n")
 snooze(5); // custom fn to sleep uninterrupted
 printf("Parent wakes up! ");
 }
 printf("All children accounted for. Good job, parent!\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

16

SIGCHLD Example: Disneyland
static const size_t kNumChildren = 5;
static size_t numChildrenDonePlaying = 0;

static void reapChild(int sig) {
 waitpid(-1, NULL, 0);
 numChildrenDonePlaying++;
}

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");
 signal(SIGCHLD, reapChild);
 for (size_t kid = 1; kid <= kNumChildren; kid++) {
 if (fork() == 0) {
 sleep(3); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 return 0;
 }
 }

 while (numChildrenDonePlaying < kNumChildren) {
 printf("At least one child still playing, so parent nods off.\n")
 snooze(5); // custom fn to sleep uninterrupted
 printf("Parent wakes up! ");
 }
 printf("All children accounted for. Good job, parent!\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 sleep(3); // sleep emulates "play" time

static const size_t kNumChildren = 5;1
static size_t numChildrenDonePlaying = 0;2
 3
static void reapChild(int sig) {4
 waitpid(-1, NULL, 0);5
 numChildrenDonePlaying++;6
}7
 8
int main(int argc, char *argv[]) {9
 printf("Let my five children play while I take a nap.\n");10
 signal(SIGCHLD, reapChild);11
 for (size_t kid = 1; kid <= kNumChildren; kid++) {12
 if (fork() == 0) {13

14
 printf("Child #%zu tired... returns to parent.\n", kid);15
 return 0;16
 }17
 }18
 19
 while (numChildrenDonePlaying < kNumChildren) {20
 printf("At least one child still playing, so parent nods off.\n")21
 snooze(5); // custom fn to sleep uninterrupted22
 printf("Parent wakes up! ");23
 } 24
 printf("All children accounted for. Good job, parent!\n");25
 return 0;26
}27

What happens if all children sleep
for the same amount of time? (E.g.

change line 15 from sleep(3 * kid) to
sleep(3)).

17

Signal Handlers
Problem: a signal handler is called if one or more signals are sent.

Like a notification that "one or more signals are waiting for you!"

The kernel tracks only what signals should be sent to you, not how many
When we are sleeping, multiple children could terminate, but result in 1 handler call!

Solution: signal handler should clean up as many children as possible.

18

SIGCHLD Signal Handlers
static void reapChild(int sig) {
 waitpid(-1, NULL, 0);
 numChildrenDonePlaying++;
}

1
2
3
4

Let's add a loop to reap as many children as
possible.

19

SIGCHLD Signal Handlers
static void reapChild(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, 0);
 if (pid < 0) break;
 numChildrenDonePlaying++;
 }
}

1
2
3
4
5
6
7

Let's add a loop to reap as many children as
possible.

Problem: this may block if other children
are taking longer! We only want to clean
up children that are done now. Others will
signal later. (DEMO)

Question: what does the waitpid loop do if
one child terminates but other children are
still running?

20

SIGCHLD Signal Handlers
static void reapChild(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 numChildrenDonePlaying++;
 }
}

1
2
3
4
5
6
7

Let's add a loop to reap as many children as
possible.

Solution: use WNOHANG, which means
don't block. If there are children we would
have waited on but aren't, returns 0. -1
typically means no children left.

Note: the kernel blocks additional signals
of that type while a signal handler is
running (they are sent later).

21

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

22

Demo: five-children.c

five-children-soln.c
23

http://web.stanford.edu/class/cs110/examples/processes/lect11/five-children-soln.c

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

24

Concurrency
Concurrency means performing multiple actions at the same time.

Concurrency is extremely powerful: it can make your systems faster, more responsive,

and more efficient. It's fundamental to all modern software.

 When you introduce multiprocessing (e.g. fork) and asynchronous signal handling

(e.g. signal), it's possible to have concurrency issues. These are tricky!

Most challenges come with shared data - e.g. two routines using the same variable.

Many large systems parallelize computations by trying to eliminate shared data - e.g.

split the data into independent chunks and process in parallel.

A race condition is an unpredictable ordering of events (due to e.g. OS scheduling)

where some orderings may cause undesired behavior.

25

Off To The Races
Consider the following program, job-list-broken.c:

The program spawns off three child processes at one-second intervals.

Each child process prints the date and time it was spawned.

The parent maintains a pretend job list (doesn't actually maintain a data structure, just

prints where operations would have been performed).

26

Off To The Races
// job-list-broken.c
static void reapProcesses(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 printf("Job %d removed from job list.\n", pid);
 }
}

char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 for (size_t i = 0; i < 3; i++) {
 pid_t pid = fork();
 if (pid == 0) execvp(kArguments[0], kArguments);
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

myth60$./job-list-broken
Sun Jan 27 03:57:30 PDT 2019
Job 27981 removed from job list.
Job 27981 added to job list.
Sun Jan 27 03:57:31 PDT 2019
Job 27982 removed from job list.
Job 27982 added to job list.
Sun Jan 27 03:57:32 PDT 2019
Job 27985 removed from job list.
Job 27985 added to job list.
myth60$./job-list-broken
Sun Jan 27 03:59:33 PDT 2019
Job 28380 removed from job list.
Job 28380 added to job list.
Sun Jan 27 03:59:34 PDT 2019
Job 28381 removed from job list.
Job 28381 added to job list.
Sun Jan 27 03:59:35 PDT 2019
Job 28382 removed from job list.
Job 28382 added to job list.
myth60$

Symptom: it looks like jobs are being removed from the list before being

added! How is this possible?
27

Off To The Races
// job-list-broken.c
static void reapProcesses(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 printf("Job %d removed from job list.\n", pid);
 }
}

char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 for (size_t i = 0; i < 3; i++) {
 pid_t pid = fork();
 if (pid == 0) execvp(kArguments[0], kArguments);
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cause: there is a race condition with the

signal handler. It is possible for the

child to execute and terminate before

the parent adds the job to the job list.

Therefore, the signal handler will be

called to remove the job before the

parent adds the job!

28

Signal Handler Challenges
Signal handlers can interrupt execution at unpredictable times

There are ways to guard against this, but it adds a lot of complexity.

Also, ideally we rely only on signal-handler-safe functions in signal handlers, but

. E.g. no printf!

most

of them are system calls

Signal handlers are difficult to use properly, and the consequences can be severe.

Many regard signals to be one of the worst parts of Unix’s design.

This installment of explains why asynchronous signal handling

can be such a headache. Main point: can be executed at bad times (while the main

execution flow is in the middle of a malloc call, or accessing a complex data

structure).

Ghosts of Unix Past

29

https://wiki.sei.cmu.edu/confluence/display/c/SIG30-C.+Call+only+asynchronous-safe+functions+within+signal+handlers
https://lwn.net/Articles/414618/

Let's learn about another way to handle
signals by waiting for them in our

program instead of using signal handlers.

30

Plan For Today
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

31

Waiting For Signals
Signal handlers allow us to do other work and be notified when signals arrive. But this

means the notification is unpredictable.

A more predictable approach would be to designate times in our program where we

stop doing other work and handle any pending signals.

benefits: this allows us to control when signals are handled, avoiding concurrency

issues

drawbacks: signals may not be handled as promptly, and our process blocks while

waiting

We will not have signal handlers; instead we will have code in our main execution that

handles pending signals.

32

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

33

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

34

sigwait()
sigwait() can be used to wait (block) on a signal to come in:

int sigwait(const sigset_t *set, int *sig);

set: the location of the set of signals to wait on
sig: the location where it should store the number of the signal received
the return value is 0 on success, or > 0 on error.

Cannot wait on SIGKILL or SIGSTOP, nor synchronous signals like SIGSEGV or SIGFPE.

35

Signal Sets
sigset_t is a special type (usually a 32-bit int) used as a bit vector. It must be created and

initialized using special functions (we generally ignore the return values).

// Initialize to the empty set of signals
int sigemptyset(sigset_t *set);

// Set to contain all signals
int sigfillset(sigset_t *set);

// Add the specified signal
int sigaddset(sigset_t *set, int signum);

// Remove the specified signal
int sigdelset(sigset_t *set, int signum);

// Create a set of SIGINT and SIGTSTP
sigset_t monitoredSignals;
sigemptyset(&monitoredSignals);
sigaddset(&monitoredSignals, SIGINT);
sigaddset(&monitoredSignals, SIGTSTP);

36

sigwait()
Here's a program that overrides the behavior for Ctl-z to print a message instead:

sigwait.c

int main(int argc, char *argv[]) {
 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

 printf("Just try to Ctl-z me!\n");
 while (true) {
 int delivered;
 sigwait(&monitoredSignals, &delivered);
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

int main(int argc, char *argv[]) {1
2
3
4

 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 while (true) {

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6

7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 int delivered;
 sigwait(&monitoredSignals, &delivered);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7

8
9

 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9

10
 }11
 12
 return 0;13
}14

37

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

sigwait()

sigwait.c

Problem: what if the user hits Ctl-z before we reach line 9, or between sigwait calls? It won't
be handled by our code!

int main(int argc, char *argv[]) {
 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

 printf("Just try to Ctl-z me!\n");
 while (true) {
 int delivered;
 sigwait(&monitoredSignals, &delivered);
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

38

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

sigwait()

sigwait.c

 sleep(2);

 sleep(2);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4

5
 6
 printf("Just try to Ctl-z me!\n");7
 while (true) {8
 int delivered;9
 sigwait(&monitoredSignals, &delivered);10
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));11

12
 }13
 14
 return 0;15
}16

Problem: what if the user hits Ctl-z before we reach line 9, or between sigwait calls? It won't
be handled by our code!

39

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

This is a race condition: an unpredictable
ordering of events where some orderings

may cause undesired behavior.

40

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

41

Do Not Disturb
The sigprocmask function lets us temporarily block signals of the specified types. Instead,

they will be queued up and delivered when the block is removed.

how is SIG_BLOCK (add this to the list of signals to block), SIG_UNBLOCK (remove

this from the list of signals to block) or SIG_SETMASK (make this the list of signals to

block)

set is a special type that specifies the signals to add/remove/replace with

oldset is the location of where to store the previous blocked set that we are

overwriting.

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Side note: forked children inherit blocked signals! We may wish to remove a block in the

child.
42

Here's the same program from before, but blocking SIGTSTP as soon as possible:

 sigprocmask(SIG_BLOCK, &monitoredSignals, NULL);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4

5
 6
 printf("Just try to Ctl-z me!\n");7
 while (true) {8
 int delivered;9
 sigwait(&monitoredSignals, &delivered);10
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));11
 }12
 13
 return 0;14
}15

sigwait.c

Do Not Disturb

Wait - if we call sigwait while signals are blocked, what happens?

Key insight: sigwait() doesn't care about blocked signals when it is called.

43

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

Recap
Recap: Signals so far

SIGCHLD Handlers

Demo: Return Trip To Disneyland

Concurrency Challenges

Waiting for Signals with sigwait and sigprocmask

Next time: multiprocessing wrap-up and virtual memory

44

