
CS110 Lecture 12: Signals and Virtual Memory

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-12.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

and Pipes
Signals Virtual Memory

Lecture
6/7

Lecture
8/9

Lecture
10/11

This
Lecture

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell! 3

Learning Goals
Learn how to temporarily ignore signals with sigprocmask and wait for signals with

sigwait

Gain practice with the SIGALRM signal for timing events

Understand how virtual memory enables multiple processes to run simultaneously

4

Plan For Today
Recap: Waiting for Signals with sigwait and sigprocmask

Practice: One more visit to Disneyland

Virtual Memory

5

Plan For Today
Recap: Waiting for Signals with sigwait and sigprocmask

Practice: One more visit to Disneyland

Virtual Memory

6

Waiting For Signals
Signal handlers allow us to do other work and be notified when signals arrive. But this

means the notification is unpredictable.

A more predictable approach would be to designate times in our program where we

stop doing other work and handle any pending signals.

benefits: this allows us to control when signals are handled, avoiding concurrency

issues

drawbacks: signals may not be handled as promptly, and our process blocks while

waiting

We will not have signal handlers; instead we will have code in our main execution that

handles pending signals.

7

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

8

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

9

sigwait()
sigwait() can be used to wait (block) on a signal to come in:

int sigwait(const sigset_t *set, int *sig);

set: the location of the set of signals to wait on
sig: the location where it should store the number of the signal received
the return value is 0 on success, or > 0 on error.

Cannot wait on SIGKILL or SIGSTOP, nor synchronous signals like SIGSEGV or SIGFPE.

10

sigwait()
Here's a program that overrides the behavior for Ctl-z to print a message instead:

sigwait.c

int main(int argc, char *argv[]) {
 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

 printf("Just try to Ctl-z me!\n");
 while (true) {
 int delivered;
 sigwait(&monitoredSignals, &delivered);
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

int main(int argc, char *argv[]) {1
2
3
4

 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 while (true) {

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6

7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 int delivered;
 sigwait(&monitoredSignals, &delivered);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7

8
9

 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));10
 }11
 12
 return 0;13
}14

 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4
 5
 printf("Just try to Ctl-z me!\n");6
 while (true) {7
 int delivered;8
 sigwait(&monitoredSignals, &delivered);9

10
 }11
 12
 return 0;13
}14

11

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

sigwait()

sigwait.c

Problem: what if the user hits Ctl-z before we reach line 9, or between sigwait calls? It won't
be handled by our code!

int main(int argc, char *argv[]) {
 sigset_t monitoredSignals;
 sigemptyset(&monitoredSignals);
 sigaddset(&monitoredSignals, SIGTSTP);

 printf("Just try to Ctl-z me!\n");
 while (true) {
 int delivered;
 sigwait(&monitoredSignals, &delivered);
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));
 }

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

12

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

sigwait()

sigwait.c

 sleep(2);

 sleep(2);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4

5
 6
 printf("Just try to Ctl-z me!\n");7
 while (true) {8
 int delivered;9
 sigwait(&monitoredSignals, &delivered);10
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));11

12
 }13
 14
 return 0;15
}16

Problem: what if the user hits Ctl-z before we reach line 9, or between sigwait calls? It won't
be handled by our code!

13

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

This is a race condition: an unpredictable
ordering of events where some orderings

may cause undesired behavior.

14

Waiting For Signals
We will designate times in our program where we stop doing other work and handle any

pending signals.

1. we need a way to handle pending signals

2. we need a way to turn on "do not disturb" for signals when we do not wish to handle

them

15

Do Not Disturb
The sigprocmask function lets us temporarily block signals of the specified types. Instead,

they will be queued up and delivered when the block is removed.

how is SIG_BLOCK (add this to the list of signals to block), SIG_UNBLOCK (remove

this from the list of signals to block) or SIG_SETMASK (make this the list of signals to

block)

set is a special type that specifies the signals to add/remove/replace with

oldset is the location of where to store the previous blocked set that we are

overwriting.

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Side note: forked children inherit blocked signals! We may wish to remove a block in the

child.
16

Here's the same program from before, but blocking SIGTSTP as soon as possible:

 sigprocmask(SIG_BLOCK, &monitoredSignals, NULL);

int main(int argc, char *argv[]) {1
 sigset_t monitoredSignals;2
 sigemptyset(&monitoredSignals);3
 sigaddset(&monitoredSignals, SIGTSTP);4

5
 6
 printf("Just try to Ctl-z me!\n");7
 while (true) {8
 int delivered;9
 sigwait(&monitoredSignals, &delivered);10
 printf("\nReceived signal %d: %s\n", delivered, strsignal(delivered));11
 }12
 13
 return 0;14
}15

sigwait.c

Do Not Disturb

Wait - if we call sigwait while signals are blocked, what happens?

Key insight: sigwait() doesn't care about blocked signals when it is called.

17

http://web.stanford.edu/class/cs110/examples/processes/lect11/sigwait.c

Plan For Today
Recap: Waiting for Signals with sigwait and sigprocmask

Practice: One more visit to Disneyland

Virtual Memory

18

Revisiting Disneyland (Again)
Let's rewrite our five-children.c program using sigwait instead of signal handlers.

1. Turn on "do not disturb" to block signals until we are ready

2. Spawn the child processes (important to do this after blocking SIGCHLD!)

3. Call sigwait in a loop to wait for incoming signals that children have finished

19

Signal Block are Inherited by Children
Key Idea: signal blocks are inherited by child processes. Therefore we must unblock in

the child - otherwise, e.g. if we are execvp'ing, that program won't receive SIGCHLD!

static void spawnChildren(size_t numChildren, sigset_t signalsToUnblock) {
 for (size_t kid = 1; kid <= numChildren; kid++) {
 if (fork() == 0) {
 sigprocmask(SIG_UNBLOCK, &signalsToUnblock, NULL);
 sleep(3 * kid); // sleep emulates "play" time
 printf("Child #%zu tired... returns to parent.\n", kid);
 exit(0);
 }
 }
}

1
2
3
4
5
6
7
8
9

10

 sigprocmask(SIG_UNBLOCK, &signalsToUnblock, NULL);

static void spawnChildren(size_t numChildren, sigset_t signalsToUnblock) {1
 for (size_t kid = 1; kid <= numChildren; kid++) {2
 if (fork() == 0) {3

4
 sleep(3 * kid); // sleep emulates "play" time5
 printf("Child #%zu tired... returns to parent.\n", kid);6
 exit(0);7
 }8
 }9
}10

20

Revisiting Disneyland (Again)
Let's rewrite our five-children.c program using sigwait instead of signal handlers.

1. Turn on "do not disturb" to block signals until we are ready

2. Spawn the child processes (important to do this after blocking SIGCHLD!)

3. Call sigwait in a loop to wait for incoming signals that children have finished

Problem: if we have code like this, the parent will not wake up unless a child returns:

while (numChildrenParentSees < kNumChildren) {
 int delivered;
 sigwait(&monitoredSignals, &delivered);

 // doesn't work - parent may sleep for longer including sigwait,
 // and parent won't hear signals while snoozing.
 snooze(5);
 }

1
2
3
4
5
6
7
8

21

SIGALRM
Let's rewrite our five-children.c program using sigwait instead of signal handlers.

Idea: we can't sleep ourselves anymore. Let's use another signal to keep track of our "sleep

time" instead; like an alarm clock.

Solution: there is a signal SIGALRM we can send to ourselves X seconds later.

// This function schedules a SIGALRM signal to be sent to us in 'duration' seconds.
static void setAlarm(double duration) {
 int seconds = (int)duration;
 int microseconds = 1000000 * (duration - seconds);
 struct itimerval next = {{0, 0}, {seconds, microseconds}};
 setitimer(ITIMER_REAL, &next, NULL);
}

1
2
3
4
5
6
7

22

Revisiting Disneyland (Again)
Let's rewrite our five-children.c program using sigwait instead of signal handlers.

1. Turn on "do not disturb" to block SIGCHLD and SIGALRM signals until we are ready

2. Spawn the child processes (important to do this after blocking SIGCHLD!)

3. Set an alarm for 5 seconds from now

4. Loop until we have seen all children return:

1. listen for incoming SIGCHLD or SIGALRM signals

2. if SIGCHLD: clean up the child

3. if SIGALRM: "wake up", count cleaned up children, set another alarm if more still

playing

23

Demo: five-children-sigwait.c

five-children-sigwait-soln.c
24

http://cs110.stanford.edu/examples/processes/lect12/five-children-sigwait-soln.c

Concurrency is powerful: it lets our code do many things at the same time
It can run faster (more cores!), and can do more (run many programs in background)
Signals are a way for concurrent processes to interact
Send signals with kill and raise
Making sure code running in a signal handler works correctly is difficult
An alternative approach for signals is to block signals until designated times when we
wait for them
Race conditions occur when code can see data in an intermediate and invalid state
Assignments 3 and 4 use signals, as a way to start easing into concurrency before we
tackle multithreading
Take CS149 if you want to learn how to write high concurrency code that runs 100x
faster

Overview: Signals and Concurrency

25

Plan For Today
Recap: Waiting for Signals with sigwait and sigprocmask

Practice: One more visit to Disneyland

Virtual Memory

26

Virtual Memory
Memory (RAM, "Random access memory") is where relevant program data (stack,

heap, etc.) is stored. It is a contiguous array of bytes.

When multiple processes run concurrently, they all may need a portion of memory

The Operating System manages memory use and access

Core question: how does the OS manage memory so multiple processes can use it?

27

Before Virtual Memory
Before multiprocessing, one process could run at a time

Used "physical addressing"; addresses used by programs and the OS were real

addresses in physical memory.

A physical address is an address in physical memory.

A process owns all of memory while it's running - can access any address

28

The Need for Virtual Memory
Challenges with multiple processes running:

how do we partition memory?

what if one process accesses the memory of another?

what if we run out of physical memory?

29

Virtual Memory Core Idea: have the
processes work with virtual ("fake")
addresses. The OS will decide what
physical addresses they actually are.

30

Virtual Memory
Challenges with multiple processes running:

how do we partition memory? -> The OS decides as it goes

what if one process accesses the memory of another? -> Virtual address spaces are

separate and monitored by OS

what if we run out of physical memory? -> OS can play tricks to swap memory to disk

when needed, and map addresses only on demand.

31

The Memory Management Unit
We need an extremely fast way to convert virtual addresses to physical addresses.

The Memory Management Unit ("MMU") is a special chip in the CPU that does this.

extremely fast - otherwise impacts performance!

32

Virtual vs. Physical Address Spaces
An address space is an ordered sequence of integer addresses, starting at 0.

The physical address space size is limited by hardware (how much RAM you have)

The virtual address space size is limited by pointer size only (64-bit on myth)

33

Virtual Memory
Challenges with multiple processes running:

how do we partition memory? -> The OS decides as it goes

what if one process accesses the memory of another? -> Virtual address spaces are

separate and monitored by OS

what if we run out of physical memory? -> OS can play tricks to swap memory to disk

when needed, and map addresses only on demand.

34

Mapping Virtual to Physical, Attempt #1
How do we map virtual addresses to physical addresses for

each process?

One idea: map each process's virtual address space to physical
memory starting at some offset. Fast translation!

Problems:

This assumes a ton of physical memory

Perhaps much of a process's virtual address space is

unused. Here, we reserve physical space anyway.

35

Mapping Virtual to Physical, Attempt #2

Problems:

More complicated address translation

Memory segments may grow (stack, heap)

Physical memory could become fragmented with variable-

sized mappings

How do we map virtual addresses to physical addresses for

each process?

Another idea: just map each process's segments to physical
memory. That way we only map what is allocated.

36

We need to define a standard "unit" of
memory that is mapped at a time, so
that mappings aren't variable size.

37

Mapping Virtual to Physical, Attempt #3

memory segments are chopped up into pages and pages

are allocated as needed.

helps with fragmentation; all pages are the same size.

more pages can be allocated on demand as needed.

the OS has a page table mapping virtual pages -> physical

ones

How do we map virtual addresses to physical addresses for

each process?

A third idea: map memory only as needed, in units of pages (a page
is 4096 bytes or some other power of 2).

38

Mapping Virtual to Physical, Attempt #3
How do we map a virtual page to a physical one?

Virtual address is concatenation of a virtual page number
(which virtual page it is in) and virtual page offset (where in

that page it is)

The MMU can go from virtual page number to physical

page number.

The corresponding physical address is the physical page

number plus the virtual page offset (since virtual and

physical pages are the same size!)

39

Mapping Virtual to Physical, Attempt #3
How do we map a virtual page to a physical one?

Here's an example of a page table for a single process:

7FFFFFFF80234 maps to 835432
0000DDEE65111 maps to 45D834

many additional entries

0000A9CF9AAAF maps to 12387B

Translation example for virtual address 0x7FFFFFFF80234230:

0x7FFFFFFF80234230 & 0xFFF = 0x230
0x230 | (0x835432 << 12) = 0x83543223

40

Virtual Memory
Challenges with multiple processes running:

how do we partition memory? -> The OS decides as it goes

what if one process accesses the memory of another? -> Virtual address spaces are

separate and monitored by OS

what if we run out of physical memory? -> OS can play tricks to swap memory to disk

when needed, and map addresses only on demand.

41

Virtual Address Space Isolation
What if one process accesses the memory of another? -> Virtual address spaces are

separate and monitored by OS

Each process has its own virtual address space; this is what all processes see when

they are running (and what we see in GDB!)

when a process accesses an address, it goes through the OS

if a memory address is invalid, OS tells the process

mappings are kept for each process; isolated address spaces

42

Virtual Memory
Challenges with multiple processes running:

how do we partition memory? -> The OS decides as it goes

what if one process accesses the memory of another? -> Virtual address spaces are

separate and monitored by OS

what if we run out of physical memory? -> OS can play tricks to swap memory to disk

when needed, and map addresses only on demand.

43

Virtual Memory
What if we run out of physical memory? -> OS can play tricks to swap memory to disk

when needed, and map addresses only on demand.

Virtual address spaces make it appear to processes like there is more memory than

there actually is

OS maps pages on demand

OS can evict pages to the hard disk when it needs more space in physical memory

Other ideas to make more memory space available: e.g.

Weird idea: main memory is a cache for the hard disk

Mac memory compression

44

https://arstechnica.com/gadgets/2013/10/os-x-10-9/17/

Virtual Memory
Virtual memory is an extremely powerful abstraction of memory for processes

Processes have no idea that this system is in place - completely invisible

Gives the operating system flexibility in how to best manage memory

MMU enables fast mappings

45

Recap
Recap: Waiting for Signals with sigwait and sigprocmask

Practice: One more visit to Disneyland

Virtual Memory

Next time: Introduction to multithreading

46

