
CS110 Lecture 13: Introduction to Multithreading

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

Illustration courtesy of Ecy King, CS110 Champion, Spring 2021

1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-13.pdf

CS110 Topic 3: How can we have
concurrency within a single process?

2

Learning About Multithreading

Introduction to
Threads

Mutexes and
Condition
Variables

Semaphores
Multithreading

Patterns

Today Lectures
14/15

Lecture 16 Lectures
17/18

3

Today's Learning Goals
Learn about how threads allow for concurrency within a single process

Understand the differences between threads and processes

Discover some of the pitfalls of threads sharing the same virtual address space

4

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

5

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

6

From Processes to Threads
Multiprocessing has allowed us to spawn other processes to do tasks or run programs

Powerful; can execute/ wait on other programs, secure (separate memory space),

communicate with pipes and signals

But limited; interprocess communication is cumbersome, hard to share

data/coordinate

Is there another way we can have concurrency beyond multiprocessing that handles

these tradeoffs differently?

7

We can have concurrency within a single process using threads: independent execution sequences

within a single process.

Threads let us run multiple functions in our program concurrently

Multithreading is very common to parallelize tasks, especially on multiple cores

In C++: spawn a thread using thread() and the thread variable type and specify what function

you want the thread to execute (optionally passing parameters!)

Thread manager switches between executing threads like the OS scheduler switches between

executing processes

Each thread operates within the same process, so they share a virtual address space (!) (globals,

text, data, and heap segments)

The processes's stack segment is divided into a "ministack" for each thread.

Many similarities between threads and processes; in fact, threads are often called lightweight

processes.

Multithreading

8

Processes:

isolate virtual address spaces (good: security and stability, bad: harder to share info)

can run external programs easily (fork-exec) (good)

harder to coordinate multiple tasks within the same program (bad)

Threads:

share virtual address space (bad: security and stability, good: easier to share info)

can't run external programs easily (bad)

easier to coordinate multiple tasks within the same program (good)

Threads vs. Processes

9

C++ thread
A thread object can be spawned to run the specified function with the given arguments.

thread myThread(myFunc, arg1, arg2, ...);

myFunc: the function the thread should execute asynchronously
args: a list of arguments (any length, or none) to pass to the function upon execution
Once initialized with this constructor, the thread may execute at any time!
Thread function's return value is ignored (can pass by reference instead)

10

C++ thread

For multiple threads, we must wait on a specific thread one at a time:
thread friends[5];

...

for (size_t i = 0; i < 5; i++) {
 friends[i].join();
}

To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);

... // do some work

// Wait for thread to finish (blocks)
myThread.join();

11

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

12

Our First Threads Program
static const size_t kNumFriends = 6;

static void greeting() {
 cout << "Hello, world!" << endl;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 thread friends[kNumFriends];

static const size_t kNumFriends = 6;1
 2
static void greeting() {3
 cout << "Hello, world!" << endl;4
}5
 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10

11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14
 friends[i] = thread(greeting); 15
 }16
 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting);
 }

static const size_t kNumFriends = 6;1
 2
static void greeting() {3
 cout << "Hello, world!" << endl;4
}5
 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13

14
15
16

 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

static void greeting() {
 cout << "Hello, world!" << endl;
}

static const size_t kNumFriends = 6;1
 2

3
4
5

 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14
 friends[i] = thread(greeting); 15
 }16
 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

static const size_t kNumFriends = 6;1
 2
static void greeting() {3
 cout << "Hello, world!" << endl;4
}5
 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14
 friends[i] = thread(greeting); 15
 }16
 17
 // Wait for threads18

19
20
21

 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

static const size_t kNumFriends = 6;

static void greeting() {
 cout << "Hello, world!" << endl;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

13

Our First Threads Program

https://cplayground.com/?p=whale-okapi-phil

14

https://cplayground.com/?p=whale-okapi-phil

Our First Threads Program
static const size_t kNumFriends = 6;

static void greeting(size_t i) {
 cout << "Hello, world! I am thread " << i << endl;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, i);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 friends[i] = thread(greeting, i);

static const size_t kNumFriends = 6;1
 2
static void greeting(size_t i) {3
 cout << "Hello, world! I am thread " << i << endl;4
}5
 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14

15
 }16
 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

static void greeting(size_t i) {
 cout << "Hello, world! I am thread " << i << endl;
}

static const size_t kNumFriends = 6;1
 2

3
4
5

 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14
 friends[i] = thread(greeting, i); 15
 }16
 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

static const size_t kNumFriends = 6;

static void greeting(size_t i) {
 cout << "Hello, world! I am thread " << i << endl;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, i);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

15

Our First Threads Program

https://cplayground.com/?p=dunlin-coyote-pika

16

https://cplayground.com/?p=dunlin-coyote-pika

C++ thread

We can also initialize an array of threads as follows (note the loop by reference):

thread friends[5];
for (thread& currFriend : friends) {
 currFriend = thread(myFunc, arg1, arg2);
}

// declare array of empty thread handles
thread friends[5];

// Spawn threads
for (size_t i = 0; i < 5; i++) {
 friends[i] = thread(myFunc, arg1, arg2);
}

We can make an array of threads as follows:

17

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

18

Race Conditions
Like with processes, threads can execute in unpredictable orderings.

A race condition is an unpredictable ordering of events where some orderings may

cause undesired behavior.

A thread-safe function is one that will always execute correctly, even when called

concurrently from multiple threads.

printf is thread-safe, but operator<< is not. This means e.g. cout statements could get

interleaved!

To avoid this, use oslock and osunlock (custom CS110 functions - #include

"ostreamlock.h") around streams. They ensure at most one thread has permission to

write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;1

19

Our First Threads Program
static const size_t kNumFriends = 6;

static void greeting(size_t i) {
 cout << oslock << "Hello, world! I am thread " << i << endl << osunlock;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, i);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 cout << oslock << "Hello, world! I am thread " << i << endl << osunlock;

static const size_t kNumFriends = 6;1
 2
static void greeting(size_t i) {3

4
}5
 6
int main(int argc, char *argv[]) {7
 cout << "Let's hear from " << kNumFriends << " threads." << endl; 8
 9
 // declare array of empty thread handles10
 thread friends[kNumFriends];11
 12
 // Spawn threads13
 for (size_t i = 0; i < kNumFriends; i++) {14
 friends[i] = thread(greeting, i); 15
 }16
 17
 // Wait for threads18
 for (size_t i = 0; i < kNumFriends; i++) {19
 friends[i].join(); 20
 }21
 22
 cout << "Everyone's said hello!" << endl;23
 return 0;24
}25

static const size_t kNumFriends = 6;

static void greeting(size_t i) {
 cout << oslock << "Hello, world! I am thread " << i << endl << osunlock;
}

int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 // declare array of empty thread handles
 thread friends[kNumFriends];

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, i);
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

friends.cc
20

http://cs110.stanford.edu/examples/threads/lect13/friends.cc

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

21

Threads Share Memory
Unlike parent/child processes, threads execute in the same virtual address space

This means we can e.g. pass parameters by reference and have all threads

access/modify them!

To pass by reference with thread(), we must use the special ref() function around any

reference parameters:

static void greeting(size_t& i) {
 ...
}

for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, ref(i));
}

1
2
3
4
5
6
7

22

Threads Share Memory

https://cplayground.com/?p=crocodile-emu-cod

23

https://cplayground.com/?p=crocodile-emu-cod

for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, ref(i));
}

1
2
3

_start greeting

main argc

argv
i

24

args args args args args args

created thread stacksmain stack

Here, we can just pass by copy instead. But keep an eye out for consequences of shared memory!

Threads Share Memory

Plan For Today
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

25

Threads allow a process to parallelize a problem across multiple cores

Consider a scenario where we want to sell 250 tickets and have 10 cores

Simulation: let each thread help sell tickets until none are left

int main(int argc, const char *argv[]) {
 thread ticketAgents[kNumTicketAgents];
 size_t remainingTickets = 250;

 for (size_t i = 0; i < kNumTicketAgents; i++) {
 ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));
 }
 for (thread& ticketAgent: ticketAgents) {
 ticketAgent.join();
 }

 cout << "Ticket selling done!" << endl;
 return 0;
}

Thread-Level Parallelism

confused-ticket-agents.cc
26

http://cs110.stanford.edu/examples/threads/lect13/confused-ticket-agents.cc

Demo: confused-ticket-agents.cc

confused-ticket-agents.cc
27

http://cs110.stanford.edu/examples/threads/lect13/confused-ticket-agents.cc

There is a race condition in this code caused by multiple threads accessing remainingTickets.
static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets
 << " remain)." << endl << osunlock;
 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."
 << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10

Overselling Tickets

thread #1 thread #2 thread #3

remainingTickets = 1

28

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 while (remainingTickets > 0) {
static void sellTickets(size_t id, size_t& remainingTickets) {1

2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 sleep_for(500); // simulate "selling a ticket"

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2

3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 2: checking if there
are tickets left. Yep!

remainingTickets = 1

29

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 while (remainingTickets > 0) {
static void sellTickets(size_t id, size_t& remainingTickets) {1

2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 sleep_for(500); // simulate "selling a ticket"

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2

3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 2: checking if there
are tickets left. Yep!

remainingTickets = 1
 z

 z

 z

30

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 while (remainingTickets > 0) {
static void sellTickets(size_t id, size_t& remainingTickets) {1

2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 sleep_for(500); // simulate "selling a ticket"

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2

3
 remainingTickets--;4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 2: checking if there
are tickets left. Yep!

remainingTickets = 1
 z

 z

 z

 z

 z

 z

31

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 remainingTickets--;

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3

4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4

5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 4: Selling ticket!

remainingTickets = 0
 z

 z

 z

 z

 z

 z

32

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 remainingTickets--;

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3

4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4

5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 4: Selling ticket!

remainingTickets = <really large number>
 z

 z

 z

33

There is a race condition in this code caused by multiple threads accessing remainingTickets.

 remainingTickets--;

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3

4
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (remainingTickets > 0) {2
 sleep_for(500); // simulate "selling a ticket"3
 remainingTickets--;4

5
 << " remain)." << endl << osunlock;6
 }7
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits."8
 << endl << osunlock;9
}10

Overselling Tickets

thread #1 thread #2 thread #3

Line 4: Selling ticket!

remainingTickets = <really large number - 1>

34

There is a race condition here!

Problem: threads could interrupt each other in between checking tickets and selling them.

If a thread evaluates remainingTickets > 0 to be true and commits to selling a ticket, another

thread could come in and sell that same ticket before this thread does.

This can happen because remainingImages > 0 test and remainingImages-- aren't atomic.

Atomicity: externally, the code has either executed or not; external observers do not see any

intermediate states mid-execution.

We want a thread to do the entire check-and-sell operation uninterrupted.

Overselling Tickets

static void sellTickets(size_t id, size_t& remainingTickets)
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 ...
 }

1
2
3
4
5
6

35

C++ statements aren't inherently atomic.

We assume that assembly instructions are atomic; but even single C++ statements like

remainingTickets-- take multiple assembly instructions.

Atomicity

Even if we altered the code to be something like this, it still wouldn't fix the problem:
static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets-- > 0) {
 sleep_for(500); // simulate "selling a ticket"
 ...
 }

1
2
3
4
5

// gets remainingTickets
0x0000000000401a9b <+36>: mov -0x20(%rbp),%rax
0x0000000000401a9f <+40>: mov (%rax),%eax

// Decrements by 1
0x0000000000401aa1 <+42>: lea -0x1(%rax),%edx

// Saves updated value
0x0000000000401aa4 <+45>: mov -0x20(%rbp),%rax
0x0000000000401aa8 <+49>: mov %edx,(%rax)

36

Each core has its own registers that it has to read from

Each thread makes a local copy of the variable before operating on it

Problem: What if multiple threads do this simultaneously? They all think there's only 128

tickets remaining and process #128 at the same time!

Atomicity
// gets remainingImages
0x0000000000401a9b <+36>: mov -0x20(%rbp),%rax
0x0000000000401a9f <+40>: mov (%rax),%eax

// Decrements by 1
0x0000000000401aa1 <+42>: lea -0x1(%rax),%edx

// Saves updated value
0x0000000000401aa4 <+45>: mov -0x20(%rbp),%rax
0x0000000000401aa8 <+49>: mov %edx,(%rax)

37

It would be nice if we could put the
check-and-sell operation behind a "locked
door" and say "only one thread may enter

at a time to do this block of code".

38

Recap
Introducing multithreading

Example: greeting friends

Race conditions

Threads share memory

Completing tasks in parallel

Example: selling tickets

Next time: introducing mutexes

39

