
CS110 Lecture 14: Threads and Mutexes

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

https://comic.browserling.com/53

1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-14.pdf

CS110 Topic 3: How can we have
concurrency within a single process?

2

Learning About Multithreading

Introduction to
Threads

Mutexes and
Condition
Variables

Semaphores
Multithreading

Patterns

Lecture 13 This/next
lecture

Lecture 16 Lectures
17/18

assign5: implement your own multithreaded news
aggregator to quickly fetch news from the web!

3

Learning Goals
Discover some of the pitfalls of threads sharing the same virtual address space

Understand how to identify critical sections and fix race conditions/deadlock

Learn how locks can help us limit access to shared resources

4

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

5

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

6

We can have concurrency within a single process using threads: independent execution sequences

within a single process.

Threads let us run multiple functions in our program concurrently

Multithreading is very common to parallelize tasks, especially on multiple cores

In C++: spawn a thread using thread() and the thread variable type and specify what function

you want the thread to execute (optionally passing parameters!)

Thread manager switches between executing threads like the OS scheduler switches between

executing processes

Each thread operates within the same process, so they share a virtual address space (!) (globals,

text, data, and heap segments)

The processes's stack segment is divided into a "ministack" for each thread.

Many similarities between threads and processes; in fact, threads are often called lightweight

processes.

Multithreading

7

C++ thread
A thread object can be spawned to run the specified function with the given arguments.

thread myThread(myFunc, arg1, arg2, ...);

myFunc: the function the thread should execute asynchronously
args: a list of arguments (any length, or none) to pass to the function upon execution
Once initialized with this constructor, the thread may execute at any time!
Thread function's return value is ignored (can pass by reference instead)

To pass objects by reference to a thread, use the ref() function:
void myFunc(int& x, int& y) {...}

thread myThread(myFunc, ref(arg1), ref(arg2));

8

C++ thread

For multiple threads, we must wait on a specific thread one at a time:
thread friends[5];

...

for (size_t i = 0; i < 5; i++) {
 friends[i].join();
}

To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);

... // do some work

// Wait for thread to finish (blocks)
myThread.join();

9

Race Conditions
Like with processes, threads can execute in unpredictable orderings.

A thread-safe function is one that will always execute correctly, even when called

concurrently from multiple threads.

printf is thread-safe, but operator<< is not. This means e.g. cout statements could get

interleaved!

To avoid this, use oslock and osunlock (custom CS110 functions - #include

"ostreamlock.h") around streams. They ensure at most one thread has permission to

write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;1

10

for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, ref(i));
}

1
2
3

_start greeting

main argc

argv
i

11

args args args args args args

created thread stacksmain stack

Here, we can just pass by copy instead. But keep an eye out for consequences of shared memory!

Threads Share Memory

Threads allow a process to parallelize a problem across multiple cores

Consider a scenario where we want to sell 250 tickets and have 10 cores

Simulation: let each thread help sell tickets until none are left

int main(int argc, const char *argv[]) {
 thread ticketAgents[kNumTicketAgents];
 size_t remainingTickets = 250;

 for (size_t i = 0; i < kNumTicketAgents; i++) {
 ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));
 }
 for (thread& ticketAgent: ticketAgents) {
 ticketAgent.join();
 }

 cout << "Ticket selling done!" << endl;
 return 0;
}

Thread-Level Parallelism

confused-ticket-agents.cc

$./confused-ticket-agents
....
Thread #1 sold a ticket (7 remain).
Thread #5 sold a ticket (6 remain).
Thread #3 sold a ticket (4 remain).
Thread #4 sold a ticket (4 remain).
Thread #2 sold a ticket (3 remain).
Thread #8 sold a ticket (1 remain).
Thread #9 sold a ticket (0 remain).
Thread #0 sold a ticket (0 remain).
Thread #0 sees no remaining tickets to sell and exits.
Thread #9 sees no remaining tickets to sell and exits.
Thread #8 sees no remaining tickets to sell and exits.
Thread #6 sold a ticket (18446744073709551615 remain).
Thread #7 sold a ticket (18446744073709551613 remain).
Thread #1 sold a ticket (18446744073709551613 remain).
...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Output

12

http://cs110.stanford.edu/examples/threads/lect13/confused-ticket-agents.cc

There is a race condition here!

Problem: threads could interrupt each other in between checking tickets and selling them.

If a thread evaluates remainingTickets > 0 to be true and commits to selling a ticket, another

thread could come in and sell that same ticket before this thread does.

This can happen because remainingImages > 0 test and remainingImages-- aren't atomic.

Atomicity: externally, the code has either executed or not; external observers do not see any

intermediate states mid-execution.

We want a thread to do the entire check-and-sell operation without competition.

Overselling Tickets

static void sellTickets(size_t id, size_t& remainingTickets)
 while (remainingTickets > 0) {
 sleep_for(500); // simulate "selling a ticket"
 remainingTickets--;
 ...
 }

1
2
3
4
5
6

13

C++ statements aren't inherently atomic.

We assume that assembly instructions are atomic; but even single C++ statements like

remainingTickets-- take multiple assembly instructions.

Atomicity

Even if we altered the code to be something like this, it still wouldn't fix the problem:
static void sellTickets(size_t id, size_t& remainingTickets) {
 while (remainingTickets-- > 0) {
 sleep_for(500); // simulate "selling a ticket"
 ...
 }

1
2
3
4
5

// gets remainingTickets
0x0000000000401a9b <+36>: mov -0x20(%rbp),%rax
0x0000000000401a9f <+40>: mov (%rax),%eax

// Decrements by 1
0x0000000000401aa1 <+42>: lea -0x1(%rax),%edx

// Saves updated value
0x0000000000401aa4 <+45>: mov -0x20(%rbp),%rax
0x0000000000401aa8 <+49>: mov %edx,(%rax)

14

Each core has its own registers that it has to read from

Each thread makes a local copy of the variable before operating on it

Problem: What if multiple threads do this simultaneously? They all think there's only 128

tickets remaining and process #128 at the same time!

Atomicity
// gets remainingImages
0x0000000000401a9b <+36>: mov -0x20(%rbp),%rax
0x0000000000401a9f <+40>: mov (%rax),%eax

// Decrements by 1
0x0000000000401aa1 <+42>: lea -0x1(%rax),%edx

// Saves updated value
0x0000000000401aa4 <+45>: mov -0x20(%rbp),%rax
0x0000000000401aa8 <+49>: mov %edx,(%rax)

15

It would be nice if we could put the
check-and-sell operation behind a "locked
door" and say "only one thread may enter

at a time to do this block of code".

16

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

17

Critical Sections
static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

A critical section is a section of code that should be executed transactionally, without competition

from other threads.

This means we want critical sections to be atomic; to other observers, it has either executed or not.

If we can fix this issue here, then sellTickets will be a thread-safe function; it will always execute

correctly, even when called concurrently from multiple threads.
18

Critical Sections
static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

We will put a lock
here with only one
key to unlock it.
 We will make it
such that the lock
must be unlocked
to proceed.

🔓🔑
19

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

Critical Sections

If a thread gets here and the key is
available, the thread takes the
key, locks the lock, and runs the
code while holding onto the key.

🔑thread #1

🔒
20

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

Critical Sections

If another thread gets here and
the lock is locked, it must wait its
turn.

thread #2🔑thread #1

🔒
waiting...

21

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

Critical Sections

When the executing thread gets
here, it unlocks the lock and
returns the key. Now another
thread may use it.

thread #2thread #1

now it's my
turn!

🔓🔑
22

static void sellTickets(size_t id, size_t& remainingTickets) {
 while (true) {

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

 }
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11

Critical Sections

When the executing thread gets
here, it unlocks the lock and
returns the key. Now another
thread may use it.

thread #2thread #1 🔑

🔒
23

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

24

Mutexes
We can create this lock-and-key combo by creating a variable of type mutex.

A mutex is technically a type of lock; there are others, but we focus just on mutexes

When you create a mutex, it is initially unlocked with the key available

You call lock() on the mutex to attempt to lock it and take the key

You call unlock() on a mutex if you have ownership of it and wish to unlock it and return

the key. That thread continues normally; one waiting thread (if any) then takes the

lock and is scheduled to run.

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

25

Mutexes
When a thread calls lock():

If the lock is unlocked: the thread takes the lock and continues execution

If the lock is locked: the thread blocks and waits until the lock is unlocked

If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives

lock (not necessarily one waiting longest)

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

26

A mutex is a way to add a constraint to
your multithreaded program: "only one

thread may execute this code at a time."
We will learn how to add more

"constraints" in the coming lectures.

27

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

If you don't pass by reference, every thread will get its own mutex copy (its own lock-

and-key); thus every thread will be able to acquire its own lock and run the code!

28

Demo: adding a mutex to ticket agents

ticket-agents.cc
29

http://cs110.stanford.edu/examples/threads/lect14/ticket-agents.cc

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

30

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

Example: a thread must acquire a lock before proceeding. We forget to call unlock somewhere,

so one thread keeps the lock forever while others are stuck waiting for the lock forever.

 if (remainingTickets == 0) {
 break;

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5

6
7

 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

31

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.
static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {
 while (true) {
 size_t myTicket;

 counterLock.lock();
 if (remainingTickets == 0) {
 break;
 } else {
 myTicket = remainingTickets;
 remainingTickets--;
 counterLock.unlock();
 }
 ...
 }
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

thread #1
🔓🔑

32

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 counterLock.lock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4

5
 if (remainingTickets == 0) {6
 break;7
 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

thread #1
🔒🔑

33

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 if (remainingTickets == 0) {
 break;

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5

6
7

 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

thread #1
🔒🔑

"See ya!"

34

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 if (remainingTickets == 0) {
 break;

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5

6
7

 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

thread #1
🔒🔑

"See ya!"

35

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 counterLock.lock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4

5
 if (remainingTickets == 0) {6
 break;7
 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

thread #2

Huh. Guess I
gotta wait for

the key. 🔒
36

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 counterLock.lock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4

5
 if (remainingTickets == 0) {6
 break;7
 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

thread #2

*100 years
later* 🔒

🤨

37

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

 counterLock.unlock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5
 if (remainingTickets == 0) {6

7
 break;8
 } else {9
 myTicket = remainingTickets;10
 remainingTickets--;11
 counterLock.unlock();12
 }13
 ...14
 }15
 ...16
}17

We can fix the issue here by making sure to unlock in all scenarios where a thread no longer needs

the lock, including when we exit the loop.
38

Deadlock is a common issue in
multiprocessing. Make sure to trace each

thread's possible paths of execution to ensure
they always return shared resources like locks.

39

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

40

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (true) {2
 3

4
5
6
7

 8
 }9
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;10
}11

41

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 mutex counterLock;

 ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets), ref(counterLock));

int main(int argc, const char *argv[]) {1
 thread ticketAgents[kNumTicketAgents];2
 size_t remainingTickets = 250;3

4
 5
 for (size_t i = 0; i < kNumTicketAgents; i++) {6

7
 }8
 ...9
}10

42

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 counterLock.lock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4

5
 if (remainingTickets == 0) {6
 counterLock.unlock();7
 break;8
 } else {9
 myTicket = remainingTickets;10
 remainingTickets--;11
 counterLock.unlock();12
 }13
 14
 sleep_for(500); // simulate "selling a ticket"15
 cout << oslock << "Thread #" << id << " sold a ticket (" << myTicket << " remain)." << endl << osunlock;16
 }17
 ...18
}19

43

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 counterLock.unlock();

 counterLock.unlock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5
 if (remainingTickets == 0) {6

7
 break;8
 } else {9
 myTicket = remainingTickets;10
 remainingTickets--;11

12
 }13
 14
 sleep_for(500); // simulate "selling a ticket"15
 cout << oslock << "Thread #" << id << " sold a ticket (" << myTicket << " remain)." << endl << osunlock;16
 }17
 ...18
}19

44

Critical sections can impact code
performance. Keep critical sections as

small as possible!

45

Mutex Usage
Other times you need a mutex:

When there are multiple threads writing to a variable.

When there is a thread writing and one or more threads reading

Why do you not need a mutex when there are no writers (only readers)?

46

Mutex Analogies

https://www.flickr.com/photos/ofsmallthings/8220574255

A mutex is a variable type that
is like a "locked door".

You can lock the door:

- if it's unlocked, you go through the
door and lock it

- if it's locked, you wait for it to unlock
first

If you most recently locked the door,
you can unlock the door:

- door is now unlocked, another may
go in now

47

Mutex Analogies
A mutex is a variable type that
is like a "ball in a bucket".

To proceed, you must take the ball
from the bucket and hold onto it.

If you find the bucket is empty, you
must wait for the ball to be returned.

When you are done executing, you
return the ball to the bucket.

⚾

�
48

Plan For Today
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

49

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

50

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

51

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

52

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☑ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)? add a mutex that must be acquired before checking-and-selling a ticket.

53

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☑ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☑ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)? add a mutex that must be acquired before checking-and-selling a ticket.

54

Recap
Recap: C++ Threads and overselling tickets

Critical Sections

Mutexes

Deadlock

The Race Condition Checklist

Next time: adding more constraints with condition variables.

55

