
CS110 Lecture 15: Mutexes and Condition Variables

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

https://commons.wikimedia.org/wiki/File:An_illus

tration_of_the_dining_philosophers_problem.png

1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-15.pdf
https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

CS110 Topic 3: How can we have
concurrency within a single process?

2

Learning About Multithreading

Introduction to
Threads

Mutexes and
Condition
Variables

Semaphores
Multithreading

Patterns

Lecture 13 Last/this
lecture

Lecture 16 Lectures
17/18

assign5: implement your own multithreaded news
aggregator to quickly fetch news from the web!

3

Learning Goals
Get more practice using mutexes to prevent race conditions

Apply the race condition checklist to eliminate race conditions

Learn how condition variables can let threads signal to each other

Get practice with the "available permits" resource model

4

Plan For Today
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

5

Plan For Today
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

6

Mutexes
We can create a lock-and-key combo by creating a variable of type mutex.

A mutex is technically a type of lock; there are others, but we focus just on mutexes

When you create a mutex, it is initially unlocked with the key available

You call lock() on the mutex to attempt to lock it and take the key

You call unlock() on a mutex if you have ownership of it and wish to unlock it and return

the key. That thread continues normally; one waiting thread (if any) then takes the

lock and is scheduled to run.

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

7

Mutexes
When a thread calls lock():

If the lock is unlocked: the thread takes the lock and continues execution

If the lock is locked: the thread blocks and waits until the lock is unlocked

If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives

lock (not necessarily one waiting longest)

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

8

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

// Assume multiple threads share this same mutex
mutex myLock;

...

myLock.lock();
// only one thread can be executing here at a time
myLock.unlock()

9

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 if (remainingTickets == 0) break;
 remainingTickets--;
 sleep_for(500); // simulate "selling a ticket"
 cout << oslock << "Thread #" << id << " sold a ticket (" << remainingTickets << " remain)." << endl << osunlock;

static void sellTickets(size_t id, size_t& remainingTickets) {1
 while (true) {2
 3

4
5
6
7

 8
 }9
 cout << oslock << "Thread #" << id << " sees no remaining tickets to sell and exits." << endl << osunlock;10
}11

10

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 mutex counterLock;

 ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets), ref(counterLock));

int main(int argc, const char *argv[]) {1
 thread ticketAgents[kNumTicketAgents];2
 size_t remainingTickets = 250;3

4
 5
 for (size_t i = 0; i < kNumTicketAgents; i++) {6

7
 }8
 ...9
}10

(It turns out that the mutex type can't be passed by copy in C++; since it doesn't make

sense to make a copy of a mutex).

11

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 counterLock.lock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4

5
 if (remainingTickets == 0) {6
 counterLock.unlock();7
 break;8
 } else {9
 myTicket = remainingTickets;10
 remainingTickets--;11
 counterLock.unlock();12
 }13
 14
 sleep_for(500); // simulate "selling a ticket"15
 cout << oslock << "Thread #" << id << " sold a ticket (" << myTicket << " remain)." << endl << osunlock;16
 }17
 ...18
}19

12

Mutex Usage
1. Identify a critical section; a section that only one thread should execute at a time.

2. Create a mutex and pass it by reference to all threads executing that critical section

3. Add a line to lock the mutex at the start of the critical section

4. Add a line to unlock the mutex at the end of the critical section

 counterLock.unlock();

 counterLock.unlock();

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5
 if (remainingTickets == 0) {6

7
 break;8
 } else {9
 myTicket = remainingTickets;10
 remainingTickets--;11

12
 }13
 14
 sleep_for(500); // simulate "selling a ticket"15
 cout << oslock << "Thread #" << id << " sold a ticket (" << myTicket << " remain)." << endl << osunlock;16
 }17
 ...18
}19

13

Deadlock
Deadlock is a situation where a thread or threads rely on mutually blocked-on resources that will

never become available.

Example: a thread must acquire a lock before proceeding. We forget to call unlock somewhere,

so one thread keeps the lock forever while others are stuck waiting for the lock forever.

 if (remainingTickets == 0) {
 break;

static void sellTickets(size_t id, size_t& remainingTickets, mutex& counterLock) {1
 while (true) {2
 size_t myTicket;3
 4
 counterLock.lock();5

6
7

 } else {8
 myTicket = remainingTickets;9
 remainingTickets--;10
 counterLock.unlock();11
 }12
 ...13
 }14
 ...15
}16

14

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

15

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

16

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

17

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☑ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)? add a mutex that must be acquired before checking-and-selling a ticket.

18

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the ticket count.

☑ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? one
thread will check-and-sell a ticket at a time.

☑ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)? add a mutex that must be acquired before checking-and-selling a ticket.

19

Plan For Today
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

20

This is a of the potential for
deadlock and how to avoid it.

canonical multithreading example

Five philosophers sit around a circular table, eating spaghetti
There is one fork for each of them
Each philosopher thinks, then eats, and repeats this three times
for their three daily meals.
To eat, a philosopher must grab the fork on their left and the fork
on their right. Then they chow on spaghetti to nourish their big,
philosophizing brain. When they're full, they put down the forks
in the same order they picked them up and return to thinking for
a while.
To think, the a philosopher keeps to themselves for some amount
of time. Sometimes they think for a long time, and sometimes
they barely think at all.

Dining Philosophers Problem

https://commons.wikimedia.org/wiki/File:An_illus

tration_of_the_dining_philosophers_problem.png

dining-philosophers-with-deadlock.cc
21

http://en.wikipedia.org/wiki/Dining_philosophers_problem
https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png
http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-deadlock.cc

Each philosopher either holds a fork or doesn't.
A philosopher grabs a fork by locking that mutex. If the fork is available, the philosopher continues.
 Otherwise, it blocks until the fork becomes available and it can have it.
A philosopher puts down a fork by unlocking that mutex.
static void philosopher(size_t id, mutex& left, mutex& right) {
 ...
}

int main(int argc, const char *argv[]) {
 mutex forks[kNumForks];
 thread philosophers[kNumPhilosophers];
 for (size_t i = 0; i < kNumPhilosophers; i++) {
 mutex& left = forks[i];
 mutex& right = forks[(i + 1) % kNumPhilosophers];
 philosophers[i] = thread(philosopher, i, ref(left), ref(right));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Dining Philosophers Problem
Goal: we must encode resource constraints into our program.

Example: how many philosophers can hold a fork at the same time?

How can we encode this into our program?

One.

Let's make a mutex for each fork.

22

A philosopher thinks, then eats, and repeats this three times.

think is modeled as sleeping the thread for some amount of time

static void think(size_t id) {
 cout << oslock << id << " starts thinking." << endl << osunlock;
 sleep_for(getThinkTime());
 cout << oslock << id << " all done thinking. " << endl << osunlock;
}

static void eat(size_t id, mutex& left, mutex& right) {
 ...
}

static void philosopher(size_t id, mutex& left, mutex& right) {
 for (size_t i = 0; i < kNumMeals; i++) {
 think(id);
 eat(id, left, right);
 }
}

Dining Philosophers Problem

23

A philosopher thinks, then eats, and repeats this three times.

eat is modeled as grabbing the two forks, sleeping for some amount of time, and putting the
forks down.

static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 left.unlock();
 right.unlock();
}

1
2
3
4
5
6
7
8
9

Dining Philosophers Problem

Spoiler: there is a race condition here that
leads to deadlock.

24

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

25

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally? the "forks" (mutexes).

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

26

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

27

A philosopher thinks, then eats, and repeats this three times.

eat is modeled as grabbing the two forks, sleeping for some amount of time, and putting the
forks down.

static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 left.unlock();
 right.unlock();
}

1
2
3
4
5
6
7
8
9

Dining Philosophers Problem

Discuss with your neighbor: come up with an
ordering of events that causes deadlock.

28

What if: all philosophers grab their left fork and then go off the CPU?

deadlock! All philosophers will wait on their right fork, which will never become available.
Testing our hypothesis: insert a sleep_for call on line 3, between getting left fork and right fork
We should be able to insert a sleep_for call anywhere in a thread routine and have no
concurrency issues.
static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 sleep_for(5000); // artificially force off the processor
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 left.unlock();
 right.unlock();
}

1
2
3
4
5
6
7
8
9

10

Food For Thought

29

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? we are
assuming that someone is always able to pick up 2 forks.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

30

The Race Condition Checklist
☑ Identify shared data that may be modified concurrently. What shared data is used

across threads, passed by reference or globally?

☑ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings? we are
assuming that someone is always able to pick up 2 forks.

☐ Use concurrency directives to force expected orderings and add constraints. How

can we use mutexes, atomic operations, or other constraints to force the correct

ordering(s)?

31

When coding with threads, you need to ensure that:

there are never any race conditions

there's zero chance of deadlock; otherwise a subset of threads are forever starved

Race conditions can generally be solved with mutexes.

We use them to mark the boundaries of critical regions and limit the number of

threads present within them to be at most one.

Deadlock can be programmatically prevented by implanting directives to limit the

number of threads competing for a shared resource. What does this look like?

Race Conditions and Deadlock

32

Plan For Today
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

33

Goal: we must encode resource constraints into our program.

Example: how many philosophers can try to eat at the same time? Four.

How can we encode this into our program?

What does this look like in code?

Alternative: how many philosophers can eat at the same time? Two.
Why might the first one be better? Imposes less bottlenecking while still solving the issue.

let's add another shared variable representing a count of "permits" or "tickets" available.
In order to try to eat (aka grab forks at all) a philosopher must get a permit
Once done eating, a philosopher must return their permit

If there are permits available (count > 0) then decrement by 1 and continue
If there are no permits available (count == 0) then block until a permit is available
To return a permit, increment by 1 and continue

Race Conditions and Deadlock

34

Let's add a new variable in main called permits, and a lock for it called permitsLock, so that we
can update it without race conditions.
We pass these to each philosopher by reference.

 size_t permits = 4;
 mutex permitsLock;

 philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits), ref(permitsLock));

int main(int argc, const char *argv[]) {1
 // NEW2

3
4

 5
 mutex forks[5];6
 thread philosophers[5];7
 for (size_t i = 0; i < 5; i++) {8
 mutex& left = forks[i];9
 mutex& right = forks[(i + 1) % 5];10

11
 }12
 for (thread& p: philosophers) p.join();13
 return 0;14
}15

Tickets, Please...

dining-philosophers-with-busy-waiting.cc
35

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

Each philosopher takes two additional parameters as a result.
The implementation of think does not change, as it does not use permits.

static void philosopher(size_t id, mutex& left, mutex& right,
 size_t& permits, mutex& permitsLock) {
 for (size_t i = 0; i < kNumMeals; i++) {
 think(id);
 eat(id, left, right, permits, permitsLock);
 }
}

1
2
3
4
5
6
7

Tickets, Please...

dining-philosophers-with-busy-waiting.cc
36

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

The implementation of eat changes:

Before eating, the philosopher must get a permit
After eating, the philosopher must return their permit.

 waitForPermission(permits, permitsLock);

 grantPermission(permits, permitsLock);

static void eat(size_t id, mutex& left, mutex& right, size_t& permits, mutex& permitsLock) {1
 // NEW2

3
 4
 left.lock();5
 right.lock();6
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;7
 sleep_for(getEatTime());8
 cout << oslock << id << " all done eating." << endl << osunlock;9
 10
 // NEW11

12
 13
 left.unlock();14
 right.unlock();15
}16

Tickets, Please...

dining-philosophers-with-busy-waiting.cc
37

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

How do we implement grantPermission?
Recall: "To return a permit, increment by 1 and continue"

static void grantPermission(size_t& permits, mutex& permitsLock) {
 permitsLock.lock();
 permits++;
 permitsLock.unlock();
}

1
2
3
4
5

grantPermission

dining-philosophers-with-busy-waiting.cc
38

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

static void waitForPermission(size_t& permits, mutex& permitsLock) {
 while (true) {
 permitsLock.lock();
 if (permits > 0) break;
 permitsLock.unlock();
 sleep_for(10);
 }
 permits--;
 permitsLock.unlock();
}

1
2
3
4
5
6
7
8
9

10

waitForPermission

Problem: this is busy waiting! We are unnecessarily and arbitrarily using CPU time to check when
a permit is available.

39

It would be nice if someone could let us
know when they return their permit.

 Then, we can sleep until this happens.

40

Plan For Today
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

41

Plan For Today
A condition variable is a variable that can be shared across threads and used for one

thread to notify to another thread when something happens. Conversely, a thread can

also use this to wait until it is notified by another thread.

We can call wait to sleep until another thread signals this condition variable.

We can call notify_all to send a signal to waiting threads.

class condition_variable_any {
public:
 void wait(mutex& m);
 template <typename Pred> void wait(mutex& m, Pred pred);
 void notify_one();
 void notify_all();
};

42

How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

Idea:

when someone returns a permit and it is the only one now available, signal.
if we need a permit but there are none available, wait.

waitForPermission

43

Now we must create a condition variable to pass by reference to all threads.

 condition_variable_any permitsCV;

 philosophers[i] = thread(philosopher, i, ref(left), ref(right),
 ref(permits), ref(permitsCV), ref(permitsLock));

int main(int argc, const char *argv[]) {1
 mutex forks[kNumForks];2
 3
 size_t permits = kNumForks - 1;4
 mutex permitsLock;5
 6
 // NEW7

8
 9
 thread philosophers[kNumPhilosophers];10
 for (size_t i = 0; i < kNumPhilosophers; i++) {11
 mutex& left = forks[i];12
 mutex& right = forks[(i + 1) % kNumForks];13

14
15

 }16
 for (thread& p: philosophers) p.join();17
 return 0;18
}19

Condition Variables

dining-philosophers-with-cv-wait.cc
44

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-cv-wait.cc

For grantPermission, we must signal when we make permits go from 0 to 1.

static void grantPermission(size_t& permits, condition_variable_any& permitsCV, mutex& pe
 permitsLock.lock();
 permits++;
 if (permits == 1) permitsCV.notify_all();
 permitsLock.unlock();
}

1
2
3
4
5
6

grantPermission

dining-philosophers-with-cv-wait.cc
45

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-cv-wait.cc

For waitForPermission, if no permits are available we must wait until one becomes available.

Here's what cv.wait does:

1. it puts the caller to sleep and unlocks the given lock, all atomically
2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do so)
4. then, cv.wait returns

static void waitForPermission(size_t& permits, condition_variable_any& permitsCV, mutex&
 permitsLock.lock();
 while (permits == 0) permitsCV.wait(permitsLock);
 permits--;
 permitsLock.unlock();
}

1
2
3
4
5
6

waitForPermission

dining-philosophers-with-cv-wait.cc
46

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-cv-wait.cc

Recap
Recap: Race Conditions and Mutexes

Dining With Philosophers

Encoding Resource Constraints

Condition Variables

Next time: more condition variables and introducing semaphores

47

