CS110 Lecture 16: Condition Variables and Semaphores

CS110: Principles of Computer Systems
Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-16.pdf
https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

CS110 Topic 3: How can we have
concurrency within a single process?

Learning About Multithreading

' N\ a I a N
Mutexes and

e MEIEE * Condition * Semaphores
Threads :
Variables
_ J _ J \)
Lecture 13 Lectures This Lectures
14/15 Lecture 17/18

assign5: implement your own multithreaded news
aggregator to quickly fetch news from the web!

Learning Goals

e |earn how condition variables can let threads signal to each other
e Get practice with the "available permits" resource model
e Understand how semaphores combine a mutex, counter and condition variable

Plan For Today

e Recap: Dining With Philosophers
e Condition Variables
e Semaphores

Plan For Today

e Recap: Dining With Philosophers
e Condition Variables
e Semaphores

Dining Philosophers Problem

e Thisis a canonical multithreading example of the potential for
deadlock and how to avoid it.

e Five philosophers sit around a circular table, eating spaghetti

e There is one fork for each of them

e Each philosopher thinks, then eats, and repeats this three times
for their three daily meals.

e To eat, a philosopher must grab the fork on their left and the fork
on their right. Then they chow on spaghetti to nourish their big,
philosophizing brain. When they're full, they put down the forks
in the same order they picked them up and return to thinking for
a while.

e To think, the a philosopher keeps to themselves for some amount
of time. Sometimes they think for a long time, and sometimes
they barely think at all. https://commons .wikimedia.org/wiki/File:An illus

tration of the dining philosophers problem.png

dining-philosophers-with-deadlock.cc

http://en.wikipedia.org/wiki/Dining_philosophers_problem
https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png
http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-deadlock.cc

Dining Philosophers Problem

Goal: we must encode resource constraints into our program.
Example: how many philosophers can hold the same fork at the same time? One.

How can we encode this into our program? Let's make a mutex for each fork.
e Each philosopher either holds a fork or doesn't.
e A philosopher grabs a fork by locking that mutex. If the fork is available, the philosopher continues.
Otherwise, it blocks until the fork becomes available and it can have it.

e A philosopher puts down a fork by unlocking that mutex.
philosopher (id, mutex& left, mutex& right) {

main (argc, *argv([]) {
mutex forks|[kNumForks];
thread philosophers[kNumPhilosophers];

(i 0; i < kNumPhilosophers; i++) {

mutex& left forks[i];

mutex& right = forks[(i + 1) % kNumPhilosophers];

philosophers[i] = thread(philosopher, i, ref(left), ref(right));
}

o~ idWN K

(thread& p: philosophers) p.join();
0;

Dining Philosophers Problem

A philosopher thinks, then eats, and repeats this three times.

e eatis modeled as grabbing the two forks, sleeping for some amount of time, and putting the
forks down.

eat (id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
sleep_for(getEatTime());
cout << oslock << id << " all done eating." << endl << osunlock;
left.unlock();
right.unlock();

1
2
3
4
5
6
7
8
9

Spoiler: there is a race condition here that
leads to deadlock.

Food For Thought

What if: all philosophers grab their left fork and then go off the CPU?

e deadlock! All philosophers will wait on their right fork, which will never become available.

e Testing our hypothesis: insert a sleep_for call on line 3, between getting left fork and right fork

e We should be able to insert a sleep_for call anywhere in a thread routine and have no
concurrency issues.

eat (id, mutex& left, mutex& right) {
left.lock();
sleep for(5000);
right.lock();
cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
sleep_ for(getEatTime());
cout << oslock << id << " all done eating." << endl << osunlock;
left.unlock();
right.unlock();

1
2
3
4
5
6
7
8
9
0]

[

10

Race Conditions and Deadlock

Goal: we must encode resource constraints into our program.
Example: how many philosophers can try to eat at the same time? Four.

o Alternative: how many philosophers can eat at the same time? Two.
e Why might the first one be better? Imposes less bottlenecking while still solving the issue.

How can we encode this into our program?

e |let's add another shared variable representing a count of "permits" or "tickets" available.
e Inorder totry to eat (aka grab forks at all) a philosopher must get a permit
* Once done eating, a philosopher must return their permit

11

Tickets, Please...

e |Let's add a new variable in main called permits, and a lock for it called permitsLock, so that we
can update it without race conditions.
e We pass these to each philosopher by reference.

permits = 4;
mutex permitsLock;

philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits), ref(permitsLock));

dining-philosophers-with-busy-waiting.cc

12

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

Tickets, Please...

e The implementation of eat changes:

= Before eating, the philosopher must get a permit
m After eating, the philosopher must return their permit.

3 waitForPermission(permits, permitsLock);

12 grantPermission(permits, permitsLock);

dining-philosophers-with-busy-waiting.cc

13

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

grantPermission

e How do we implement grantPermission?
e Recall: "Toreturn a permit, increment by 1 and continue"

grantPermission(& permits, mutex& permitsLock) {
permitsLock.lock();
permits++;

permitsLock.unlock();

}

dining-philosophers-with-busy-waiting.cc

14

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-busy-waiting.cc

waitForPermission

e How do we implement waitForPermission?

e Recall:
= "|f there are permits available (count > 0) then decrement by 1 and continue"
= "|f there are no permits available (count == 0) then block until a permit is available"

waitForPermission (& permits, mutex& permitsLock) {
() {
permitsLock.lock();
(permits > 0) :
permitsLock.unlock();
sleep for(10);
}
permits--;
permitsLock.unlock();

}

1
2
3
4
5
6
7
8
9
0]

[

Problem: this is busy waiting! We are unnecessarily and arbitrarily using CPU time to check when
a permit is available.

15

't would be nice it someone could let us
know when they return their permit.
Then, we can sleep until this happens.

Plan For Today

e Recap: Dining With Philosophers
e Condition Variables
e Semaphores

17

Condition Variables

A condition variable is a variable that can be shared across threads and used for one
thread to notify other threads when something happens. Conversely, a thread can also
use this to wait until it is notified by another thread.

e We can call wait() to sleep until another thread signals this condition variable.
e We can call notify_all() to send a signal to waiting threads.

condition_variable_any myConditionVariable;

myConditionVariable.wait();

myConditionVariable.notify all();

*not final prototype for wait

18

waitForPermission

How do we implement waitForPermission? Recall:

o "|f there are permits available (count > 0) then decrement by 1 and continue"
o "|f there are no permits available (count == 0) then block until a permit is available"

Idea:

e when someone returns a permit and it is the only one now available, notify all.
e if we need a permit but there are none available, wait.

19

Condition Variables

Now we must create a condition variable to pass by reference to all threads.

8 condition_variable_any permitsCV;

philosophers[i] = thread(philosopher, i, ref(left), ref(right),
ref (permits), ref(permitsCV), ref(permitsLock));

dining-philosophers-with-cv-wait.cc

20

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait.cc

grantPermission

For grantPermission, we must signal when we make permits go from O to 1.

grantPermission (& permits, condition_variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();
permits++;

(permits == 1) permitsCV.notify all();
permitsLock.unlock();

}

ANV WDN =

dining-philosophers-with-cv-wait.cc

21

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait.cc

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {

permitsLock.unlock();

permitsCV.wait();

permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

1
2
3
4
5
6
7
8
9
0

[

Key Idea: we must give up ownership of the lock when we wait, so that someone else can put a
permit back.

Spoiler: there is a race condition here that
could lead to deadlock. (HINT: notifications
aren't queued)

22

waitForPermission

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {
permitsLock.unlock();
permitsCV.wait();

permitsLock.lock();
}

permits--;
permitsLock.unlock();

CVWOoONOU B WNRK

[
—~

0 permits =0 i

Tp o
& © &

thread #1 thread #2

23

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

4 permitsLock.unlock();

PERMIT| &

thread #1

| need to wait for a

permit in order to eat.

thread #2

24

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {
permitsLock.unlock();
permitsCV.wait () ;

permitsLock.lock();
}

permits--;
permitsLock.unlock();

}

0 permits =0 0

O VWO NONUL b WDNR

=

All done eating! | will
return my permit.

)
"X

thread #1 thread #2

25

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {
permitsLock.unlock();
permitsCV.wait () ;

permitsLock.lock();
}

permits--;
permitsLock.unlock();

}

0 permits =1 0

O VWO NONUL b WDNR

=

All done eating! | will
return my permit.

thread #1 thread #2

26

waitForPermission

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {
permitsLock.unlock();
permitsCV.wait () ;

permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

0 permits =1 0

Oh! | should notify that
there is a permit now.

O VWO NONUL b WDNR

=

thread #1 thread #2

27

waitForPermission

waitForPermission(& permits, condition_variable any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {
permitsLock.unlock();
permitsCV.wait();

permitsLock.lock();
}

permits--;
permitsLock.unlock();

}

'' B s
0 permits =1 0

O VWO NONUL b WDNR

=

"attention waiting threads, a Z
permit is available!" y 4

y 4

—

thread #1 thread #2

28

waitForPermission

5 permitsCV.wait();

thread #1

thread #2

29

waitForPermission

5 permitsCV.wait();

thread #1

thread #2

*100 years
later”

30

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {

permitsLock.unlock();

permitsCV.wait();

permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

1
2
3
4
5
6
7
8
9
0]

[

Key Idea: we must give up ownership of the lock when we wait, so that someone else can put a
permit back.

Key Problem: if we give up the lock before calling wait(), someone could notify before we are
ready, because notifications aren't queued! If thatis the last notification, we may wait forever.

31

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ¢{
permitsLock.lock();
(permits == 0) {

permitsLock.unlock();

permitsCV.wait();

permitsLock.lock();
}
permits--;
permitsLock.unlock();

}

1
2
3
4
5
6
7
8
9
0]

[

Solution: condition variables are meant for these situations. They are able to unlock the lock for
us after we are put to sleep.

32

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

permitsCV.wait (permitsLock);

Solution: a condition variable is meant for these situations.

e |t will unlock the lock for us after we are put to sleep.
e When we are notified, it will only return once it has reacquired the lock for us.

33

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

permitsCV.wait (permitsLock);

Here's what cv.wait does:

1. it puts the caller to sleep and unlocks the given lock, all atomically

2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do so)

4. then, cv.wait returns

34

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ({

permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);
}
permits--;
permitsLock.unlock();

1
2
3
4
5
6
7
8

Spoiler: there is a race condition here that could lead to negative permits.
(HINT: consider when one permit becomes available for multiple
waiting threads.)

35

waitForPermission

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

0O~ OYULIbWDN K

0 permits =0 0

E O - -

thread #1 thread #2 thread #3

36

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

4 permitsCV.wait (permitsLock);

PERMIT| &

thread #1

thread #2

We need to wait for a
permit in order to eat.

thread #3

37

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({

permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);
}
permits--;
permitsLock.unlock();

1
2
3
4
5
6
7
8

0 permits =0 0

All done eating! | will
return my permit.

)
"X

thread #1 thread #2 thread #3

38

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

00O ~NNOYUL WD =

0 permits =1 0

All done eating! | will
return my permit.

thread #1 thread #2 thread #3 N

waitForPermission

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

00O ~NNOYUL WD =

0 permits =1 0

Oh! | should notify that
there is a permit now.

thread #1 thread #2 thread #3 “

waitForPermission

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

00O ~NNOYUL WD =

0 permits =1 0

"attention waiting threads, a
permit is available!"

- =

\090)“

thread #1 thread #2 thread #3 .

waitForPermission

6 permits--;

thread #1

thread #2

thread #3

42

waitForPermission

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);
}
permits--;
permitsLock.unlock();

1
2
3
4
5
6
7
8

i permits =0 i

X

thread #1 thread #2 thread #3

43

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

6 permits--;

PERMIT| &

thread #1 thread #2

A ‘,\ '

thread #3

44

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

6 permits--;

i_permlts <very large #> i

PERMIT| &

thread #1 thread #2

thread #3

45

https://slides.com/secure/decks/2336836/print?margin=0.05&pdfSeparateFragments=false&print-pdf=true&showNotes=false&slideNumber=true

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ({

permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);
}
permits--;
permitsLock.unlock();

1
2
3
4
5
6
7
8

Key Problem: if multiple threads are woken up for one new permit, it's possible that some of them
may have to continue waiting for a permit.

46

waitForPermission

For waitForPermission, if no permits are available we must wait until one becomes available.

waitForPermission (& permits, condition_variable_ any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

OO ULIdWDN -

Key Problem: if multiple threads are woken up for one new permit, it's possible that some of them
may have to continue waiting for a permit.

Solution: we must call wait() in a loop, in case we must call it again to wait longer.

47

dining-philosophers-with-cv-wait.cc

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait.cc

Condition Variables

There is a notify_one() method to notify just one thread instead of all.

e however, here, we would then have to notify every time we put a permit back (why?)

e imagine we notify just when permits goes from O to 1, but only notify one thread

e threads A and B have permits and are eating

e threads C and D are waiting for permits (none currently available)

e first, thread A returns their permit (O -> 1) and signals to one thread (e.g. C)

e then, thread B returns their permit (1 -> 2), but doesn't signal

e C wakes up and claims the permit

e Dis still waiting! :(
Key Idea: In our approach of notifying just when we go from O -> 1, others may return further
permits after us; therefore, we should wake up everyone just in case. Perhaps this approach
results in fewer notifications.

Other note: we still always need a loop around calls to wait - because of spurious wakeups even
when a notification wasn't sent! Or if another philosopher grabs the permit before us. .

Condition Variables

A condition variable is a variable that can be shared across threads and used for one
thread to notify other threads when something happens. Conversely, a thread can also
use this to wait until it is notified by another thread.

e We can call wait(lock) to sleep until another thread signals this condition variable. The
condition variable will unlock and re-lock the specified lock for us.

e We can call notify_all() to send a signal to waiting threads.
e We call wait(lock) in a loop in case we are woken up but must wait longer.

49

Demo: Dining Philosophers with
Condition Variables

dining-philosophers-with-cv-wait.cc

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait.cc

Condition Variables

waitForPermission (& permits, condition_variable_any& permitsCV, mutex& permitsLock) ({
permitsLock.lock();
(permits == 0) {
permitsCV.wait (permitsLock);

}
permits--;
permitsLock.unlock();

00O ~NNOYUL WD =

This while loop pattern is so common that there is another convenience form of wait that also
includes the loop.

e Thereis asecond parameter which is a lambda function: it should return true when we wish to
stop repeatedly waiting for a notification.

dining-philosophers-with-cv-wait-lambda.cc

51

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait-lambda.cc

Condition Variables

permitsCV.wait (permitsLock, [&permits] { permits > 0; });

<Predicate pred>
condition variable any::wait (mutex& m, Pred pred) {
(!pred()) wait(m);

dining-philosophers-with-cv-wait-lambda.cc

http://cs110.stanford.edu/examples/threads/lect16/dining-philosophers-with-cv-wait-lambda.cc

Semaphore

This "permission slip" pattern with signaling is a very common pattern:

e Have a counter, mutex and condition_variable_any to track some permission slips
e Thread-safe way to grant permission and to wait for permission (aka sleep)
e But,it's cumbersome to need 3 variables to implement this - is there a better way?
e A semaphore is a single variable type that encapsulates all this functionality

53

Plan For Today

e Recap: Dining With Philosophers
e Condition Variables
e Semaphores

54

Semaphore

A semaphore is a variable type that lets you manage a count of finite resources.

= You initialize the semaphore with the count of resources to start with
= You can request permission via semaphore::wait() - aka waitForPermission
= You can grant permission via semaphore::signal() - aka grantPermission

= Note: count can be negative! This allows for some interesting use cases (more later).

semaphore {

semaphore (value = 0);
wait();
signal();

value;
std: :mutex m;
std::condition_variable_any cv;

1
y)
3
4
5
6
7
8
)
10
11 }

55

Semaphore

A semaphore is a variable type that lets you manage a count of finite resources.
= You initialize the semaphore with the count of resources to start with

semaphore permits(5);

= When a thread wants to use a permit, it first waits for the permit, and then signals whenitis
done using a permit:

permits.wait();

permits.signal();

= Amutexis kind of like a special case of a semaphore with one permit, but you should use a
mutex in that case as it is simpler and more efficient. Additionally, the benefit of a mutex is that

it can only be released by the lock-holder.

56

Semaphore - signal

A semaphore is a variable type that lets you manage a count of finite resources.

= You can grant permission via semaphore::signal() - aka grantPermission

semaphore { | | semaphore: :signal() {
5 m.lock();
semaphore (value = 0); value++;
wait(); (value == 1) cv.notify all();
signal(); m.unlock();

}

value;
std: :mutex m;
std::condition_variable_any cv;

1

y)

3

4

5

6

7

8

)
10
11 }

57

Semaphore - wait

A semaphore is a variable type that lets you manage a count of finite resources.

= You can request permission via semaphore::wait() - aka waitForPermission

1

y)

3

4

5

6

7

8

)
10
11 }

semaphore: :wait () {
m.lock();
cv.wait(m, [1 { value > 0; })

semaphore {

semaphore (value = 0);
wait();
signal();

value--;
m.unlock();

}

value;
std: :mutex m;
std::condition_variable_any cv;

Why [thisl? To access instance
variables in a lambda, we must
capture the current object.

58

And Now...We Eatl

Here's our final version of the dining-philosophers, replacing size_t, mutex, and
condition_variable_any with a single semaphore.

10 semaphore permits (kNumForks - 1);

philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits));

dining-philosophers-with-semaphore.cc

59

http://cs110.stanford.edu/examples/threads/lect15/dining-philosophers-with-semaphore.cc

Recap

e Recap: Dining With Philosophers
e Condition Variables
e Semaphores

Next time: multithreading patterns with mutexes, condition variables and semaphores

60

