
CS110 Lecture 2: Filesystem Design, Part 1

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-2.pdf

Asking Questions
Feel free to raise your hand at any time with a question

If you are more comfortable, you can post a question in the Ed forum thread for each

day’s lecture (optionally anonymously)

We will monitor the thread throughout the lecture for questions

Visit Ed (or access via Canvas):

Today's thread:

https://edstem.org/us/courses/16701/discussion/

https://edstem.org/us/courses/16701/discussion/981967

2

https://edstem.org/us/courses/16701/discussion/
https://edstem.org/us/courses/16701/discussion/981967

CS110 Topic 1: How can we design
filesystems to store and manipulate files on

disk, and how can we interact with the
filesystem in our programs?

3

Learning About Filesystems

Unix v6
Filesystem design,

part 1 (files)

Unix v6
Filesystem design,

part 2
(directories)

Interacting with
the filesystem

from our
programs

This lecture Lecture 3 Lecture 4

assign2: implement portions of a filesystem!

4

Learning Goals
Learn about the differences in how data is stored in memory vs. on disk

Understand the design of the Unix v6 filesystem in how it represents files

Understand the tradeoffs and limitations in filesystem design

5

Lecture Plan
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

6

Lecture Plan
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

7

Data Storage and Access
The stack, heap and other segments of program data live in memory (RAM)

fast
byte-addressable: can quickly access any byte of data by address, but not individual bits by
address
not persistent - cannot store data between power-offs

The filesystem lives on disk (eg. hard drives)

slower
persistent - stores data between power-offs
sector-addressable: cannot read/write just one byte of data - can only read/write "sectors" of
data

8

Data Storage and Access
 A hard disk is sector-addressable: cannot read/write just one byte of data - can only read/write
"sectors" of data. (we will work with a sector size of 512; but size is determined by the physical
drive).

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

Let's imagine that the hard disk creators provide software to let us interface with the disk.

This is all we get! We have to layer functions on top of these to ultimately allow us to read, write,
lookup, and modify entire files.

9

Data Storage and Access
 Let's imagine that the hard disk creators provide software to let us interface with the disk.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

char text[512];
readSector(5, text);

// Now text contains the contents of sector 5

int nums[512 / sizeof(int)];
readSector(6, nums);

// Now nums contains the contents of sector 6

1
2
3
4
5
6
7
8
9

How do we use readSector? Here are some examples:

10

Data Storage and Access
 Let's imagine that the hard disk creators provide software to let us interface with the disk.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

char text[512] = "Hello, world!";
writeSector(5, text);

// Now sector 5 contains "Hello, world!" (and \0) followed by garbage values.

int nums[512 / sizeof(int)];
readSector(6, nums);
nums[15] = 22;
writeSector(6, nums);

// Now sector 6 is updated to change its 16th number to be 22.

1
2
3
4
5
6
7
8
9

10
11

How do we use writeSector? Here are some examples:

11

Filesystem Goals
We want to read/write file on disk and have them persist even when the device is off.

This may include operations like:

creating a new file on disk
looking up the location of a file on disk
reading all or part of an existing file from disk
editing part of an existing file from disk
creating folders on disk
getting the contents of folders on disk
...

12

Lecture Plan
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

13

Case Study: Unix V6 Filesystem
We will use the Unix Version 6 Filesystem to see an example of filesystem design.

From around 1975; well-designed, open-source filesystem
Great example of a well-thought-out, layered engineering design
Not the only filesystem design - each has tradeoffs. Modern file systems (particularly
for Linux) are, in general, descendants of this file system, but they are more complex
and geared towards high performance and fault tolerance.
Details we discuss (e.g. "size of a sector") are specific to this filesystem design, but
general principles apply to modern operating systems
Some other filesystems are open source and viewable if you're interested (e.g.,

, which is the most common Linux file system right now)
the

ext4 file system
Our discussion will highlight various design questions as we go. Consider the
pros/cons of this approach vs. alternatives!

14

https://opensource.com/article/17/5/introduction-ext4-filesystem

Sectors and Blocks
A filesystem generally defines its own unit of data, a "block," that it reads/writes at a time.

"Sector" = hard disk storage unit
"Block" = filesystem storage unit (1 or more sectors) - software abstraction

Pros of larger block size? Smaller block size?

Example: the block size
could be defined as two
sectors

The Unix V6 Filesystem defines a block to be 1 sector (so they are interchangeable).
15

Storing Data on Disk
Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in images)
2. file metadata - information about files (e.g. name, size)

Key insight: both of these must be stored on the hard disk. Otherwise, we will not have it
across power-offs! (E.g. without storing metadata we would lose all filenames after
shutdown). This means some blocks must store data other than payload data.

16

Storing Data on Disk
Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in images)
2. file metadata - information about files (e.g. name, size)

Key insight: both of these must be stored on the hard disk. Otherwise, we will not have it
across power-offs! (E.g. without storing metadata we would lose all filenames after
shutdown). This means some blocks must store data other than payload data.

17

File Payload Data
Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in images)
2. file metadata - information about files (e.g. name, size)

Design questions to consider:

how do we handle small files < 512 bytes?
for files spanning multiple blocks, must their blocks be adjacent?

18

File Payload Data
Design questions to consider:

how do we handle small files < 512 bytes? Still reserve entire block (most do this)

 reserving partial blocks may better utilize space, but more complex to implement

for files spanning multiple blocks, must their blocks be adjacent? No.

Problem: how do we know what block numbers store a given file's data?

19

Storing Data on Disk
Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in images)
2. file metadata - information about files (e.g. name, size)

We need somewhere to store information about each file, such as which block numbers
store its payload data. Ideally, this data would be easy to look up as needed.

Problem: how do we know what block numbers store a given file's data?

20

Inodes
An inode ("index node") is a grouping of data about a single file. It stores things like:

file size
ordered list of block numbers that store file payload data

struct inode {
 uint16_t i_mode; // bit vector of file
 // type and permissions
 uint8_t i_nlink; // number of references
 // to file
 uint8_t i_uid; // owner
 uint8_t i_gid; // group of owner
 uint8_t i_size0; // most significant byte
 // of size
 uint16_t i_size1; // lower two bytes of size
 // (size is encoded in a
 // three-byte number)
 uint16_t i_addr[8]; // device addresses
 // constituting file
 uint16_t i_atime[2]; // access time
 uint16_t i_mtime[2]; // modify time
};

The full definition of an inode has much more; but
we focus just on size (i_size0 and i_size1) and
block numbers (i_addr[8]). An inode is 32 bytes
big in this filesystem.

The filesystem stores inodes on disk together in
the inode table for quick access.

21

Inodes
The filesystem stores inodes on disk together in the inode table for quick access.
inodes are stored in a reserved region starting at block 2 (block 0 is "boot block"
containing hard drive info, block 1 is "superblock" containing filesystem info).
 Typically at most 10% of the drive stores metadata.
16 inodes fit in a single block here.

Filesystem goes from filename to inode number ("inumber") to file data. (Demo time!)
22

Inodes
We need inodes to be a fixed size, and not too large. So how should we store the block
numbers? How many should there be?

1. if variable number, there's no fixed inode size
2. if fixed number, this limits maximum file size

The inode design here has space for 8 block numbers. But we will see later how we can
build on this to support very large files.

23

Inodes

24

Practice #1: Inodes
Let's say we have an inode with the following information (remember 1 block = 1 sector =
512 bytes):

file size: 600 bytes

block numbers: 56, 122

How many bytes of block 56 store file payload data?

How many bytes of block 122 store file payload data?

25

Practice #2: Inodes
Let's say we have an inode with the following information (remember 1 block = 1 sector =
512 bytes):

file size: 2000 bytes

block numbers: 56, 122, 45, 22

Which block number stores the 2000th byte of the file?

Which block number stores the 1500th byte of the file?

Bytes 0-511 reside within block 56, bytes 512-1023 within block 122, bytes 1024-1535
within block 45, and bytes 1536-1999 at the front of block 22.

26

Note: inodes live on disk. But we can
read them into memory where we can

represent them as structs.

27

Inodes
 Let's imagine that the hard disk creators provide software to let us interface with the disk.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

typedef struct inode {
 uint16_t i_addr[8]; // device addresses
 // constituting file
 ...
} inode;

// Loop over each inode in sector 2
inode inodes[512 / sizeof(inode)];
readSector(2, inodes);
for (size_t i = 0; i < sizeof(inodes) / sizeof(inodes[0]); i++) {
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12

How do we access inodes? Here are some examples:

28

Lecture Plan
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

29

File Size
Problem: with 8 block numbers per inode, the largest a file can be is 512 * 8 = 4096 bytes
(~4KB). That definitely isn't realistic!

Let's say a file's payload is stored across 10 blocks:

45, 42, 15, 67, 125, 665, 467, 231, 162, 136

Assuming that the size of an inode is fixed, where can we put these block numbers?

Solution: let's store them in a block, and then store that block's number in the inode!

30

Indirect Addressing
Let's say a file's payload is stored across 10 blocks:

451, 42, 15, 67, 125, 665, 467, 231, 162, 136

Solution: let's store them in a block, and then store that block's number in the inode! This
approach is called indirect addressing.

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

The quick
brown fox
jumped over
the...

31

Indirect Addressing
Design questions:

should we make all the block numbers in an inode use indirect addressing?
should we use this approach for all files, or just large ones?

Indirect addressing is useful, but means that it takes more steps to get to the data, and we may
use more blocks than we need.

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

The quick
brown fox
jumped over
the...

32

Indirect Addressing
Design questions:

should we make all the block numbers in an inode use indirect addressing? just some.
should we use this approach for all files, or just large ones? just large ones.

Indirect addressing is useful, but means that it takes more steps to get to the data, and we may
use more blocks than we need.

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

The quick
brown fox
jumped over
the...

33

Singly-Indirect Addressing
The Unix V6 filesystem uses singly-indirect addressing (blocks that store payload block
numbers) just for large files.

check flag or size in inode to know whether it is a small file (direct addressing) or large
one (indirect addressing)

If small, each block number in the inode stores payload data
If large, first 7 block numbers in the inode stores block numbers for payload data
8th block number? we'll get to that :)

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

The quick
brown fox
jumped over
the...

34

Singly-Indirect Addressing
Let's assume for now that an inode for a large file uses all 8 block numbers for singly-
indirect addressing. What is the largest file size this supports? Each block number is 2
bytes big.

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

The quick
brown fox
jumped over
the...

8 block numbers in an inode x

256 block numbers per singly-indirect block x

 512 bytes per block

= ~1MB

35

Practice: Singly-Indirect Addressing
Let's say we have an inode with the following information (remember 1 block = 1 sector =
512 bytes, and block numbers fit i):

file size: 200,000 bytes

block numbers: 56, 122

Which singly-indirect block stores the block number holding the 150,000th byte of the
file?

 Bytes 0-131,071 reside within blocks whose block numbers are in block 56. Bytes 131,072
(256*512) - 199,999 reside within blocks whose block numbers are in block 122.

36

File Size
Problem: even with singly-indirect addressing, the largest a file can be is 8 * 256 * 512 =
1,048,576 bytes (~1MB). That still isn't realistic!

Solution: let's use doubly-indirect addressing; store a block number for a block that
contains singly-indirect block numbers.

37

File Size
Solution: let's use doubly-indirect addressing; store a block number for a block that
contains singly-indirect block numbers.

inode

filesize: 5000

blocknums: 450

...

block 450

451,42,15,67,

125,665,467,

231,162,136

block 450

451,42,15,67,

125,665,467,

231,162,136

block 451

55,34,12,44,...

block 55

The quick
brown fox
jumped over
the...

Allows even larger files, but data takes even more steps to access. How do we employ this
idea?

38

Indirect Addressing
The Unix V6 filesystem uses singly-indirect addressing (blocks that store payload block
numbers) just for large files. It also uses doubly-indirect addressing (blocks that store
singly-indirect block numbers).

check flag or size in inode to know whether it is a small file (direct addressing) or large
one (indirect addressing)

If small, each block number in the inode stores payload data
If large, first 7 block numbers in the inode stores block numbers for payload data
NEW: If large, 8th block number in the inode stores singly-indirect block numbers

39

Indirect Addressing
If small, each block number in the inode stores payload data
If large, first 7 block numbers in the inode stores block numbers for payload data
If large, 8th block number in the inode stores singly-indirect block numbers

In other words; a file can be represented using at most 256 + 7 = 263 singly-indirect blocks. The
first seven are stored in the inode. The remaining 256 are stored in a block whose block number

is stored in the inode.

40

Indirect Addressing
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-indirect
block number. What is the largest file size this supports? Each block number is 2 bytes
big.

263 singly-indirect block numbers total x

256 block numbers per singly-indirect block x

 512 bytes per block

= ~34MB

41

Indirect Addressing
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-indirect
block number. What is the largest file size this supports? Each block number is 2 bytes
big.

OR:

(7 * 256 * 512) + (256 * 256 * 512) ~ 34MB

(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover, since
block numbers are 2 bytes, we can number at most 2^16 - 1 = 65,535 blocks, meaning the
entire filesystem can be at most 65,535 * 512 ~ 32MB.

42

Indirect Addressing Summary
If small (<= 4096 bytes), each block number in the inode stores payload data
If large:

first 7 block numbers in the inode stores block numbers for payload data
8th block number in the inode stores singly-indirect block numbers

Not all the block numbers may be used. E.g.

8th block number may be unused
Or only the first X singly-indirect block numbers may be used
Or a singly-indirect block may not be completely filled with block numbers

43

Lecture Plan
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

44

Unix V6 Filesystem Practice #1
Assume we have a large file with
inumber 16. How do we find the
block containing the start of its
payload data? How about the
remainder of its payload data?

45

Unix V6 Filesystem Practice #1
1. Go to block 26, and start reading

block numbers. For the first
number, 80, go to block 80 and read
the beginning of the file (the first
512 bytes). Then go to block 87 for
the next 512 bytes, etc.

2. After 256 blocks, go to block 30,
and follow the 256 block numbers
to 89, 114, etc. to read the 257th-
511th blocks of data.

3. Continue with all indirect blocks,
32, 50, 58, 59 to read all 800,000
bytes.

46

Unix V6 Filesystem Practice #2
Assume we have a large file with
inumber 16. How do we find the
block containing the start of its
payload data? How about the
remainder of its payload data?

47

Unix V6 Filesystem Practice #2
1. Go to block 26, and start reading block

numbers. For the first number, 80, go to
block 80 and read the beginning of the
file (the first 512 bytes). Then go to
block 41 for the next 512 bytes, etc.

2. After 256 blocks, go to block 35, repeat
the process. Do this a total of 7 times,
for blocks 26, 35, 32, 50, 58, 22, and 59,
reading 1792 blocks.

3. Go to block 30, which is a doubly-
indirect block. From there, go to block
87, which is an indirect block. From
there, go to block 89, which is the
1793rd block.

48

Recap
Data Storage and Access

Filesystem goals

Case Study: The Unix v6 Filesystem

Sectors/Blocks

Inodes

Large files

Practice

 Next time: how can we update our filesystem design to support directories?

49

