
CS110 Lecture 20: Introduction to Networking

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-20.pdf

CS110 Topic 4: How can we write programs
that communicate over a network with

other programs?

2

Learning About Networking

Introduction to
 Networking

Servers / HTTP
Clients, Servers

and APIs
Networking
System Calls

Today Lecture 21 Lecture 22 Lecture 23

assign6: implement an HTTP Proxy that sits between a client device and
a web server to monitor, block or modify web traffic.

3

Learning Goals
Understand how networking enables two programs on separate machines to

communicate

Learn about the client-server model and how client and server programs interact

Understand how to write our first client program

4

Plan For Today
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

5

Plan For Today
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

6

Networking Overview
We have learned how to write programs that can communicate with other programs

via mechanisms like signals and pipes.

However, the communicating programs must both be running on the same machine.

Networking allows us to write code to send and receive data to/from a program

running on another machine.

Many new questions, such as:

how does the data get there?

what functions do we use to send/receive data?

7

Networking Patterns
Most networked programs rely on a pattern called the "client-server model"

This refers to two program "roles": clients and servers

clients send requests to servers, who respond to those requests

e.g. YouTube app (client) sends requests to the YouTube servers for what content to display

e.g. Web browser (client) sends requests to the server at a URL for what content to display

A server continually listens for incoming requests and sends responses back ("running a phone

call center")

A client sends a request to a server and does something with the response ("making a call")

We will learn how to write both client and server programs.

on assign6, your proxy will act as both a client and a server!

8

Sending/Receiving Data
We can send any arbitrary bytes over the network

The client and server usually agree on a data format to use for requests and responses

Many data protocols like HTTP (internet), IMAP (email), others

9

But how does data actually get from one
machine to another?

10

Plan For Today
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

11

IP Addresses
To send data to another program, we need to know the IP Address ("Internet Protocol

Address") of its machine

Every computer on a network has a unique IP Address - e.g. 171.67.215.200

A traditional IPv4 ("version 4") address is 4 bytes long: 4 numbers from 0-255

separated by periods

Problem: there aren't enough IPv4 addresses to go around anymore! Exhausted in

the 2010s

Now there is a new version, IPv6, supporting more values with 16-byte addresses

An IPv6 address is 8 groups of 4 hexadecimal digits - e.g.

2001:0db8:85a3:0000:0000:8a2e:0370:7334

12

DNS Lookup
Problem: it's hard for us to remember IP addresses for different machines!

Solution: assign human-readable names (e.g. "google.com") to different machines, and

translate those names to IP addresses.

The Domain Name System (DNS) is what translates names to IP addresses

A collection of decentralized and hierarchical servers that we can contact to perform

translation

decentralized: many DNS servers handling lookup all over

hierarchical: translation performed in steps: e.g for looking up web.stanford.edu:

query an .edu root server for IP address of a stanford.edu name server

query stanford.edu name server for IP address of web.stanford.edu

Form of name resolution, like inode numbers and filename lookup in filesystems!

13

Digging For Treasure
Your computer performs DNS lookups frequently on your behalf - e.g. when you want

to visit a website in your browser.

For fun, we can view DNS servers using the dig command:

where are the edu nameservers? "dig -t NS +noall +answer edu"

the stanford.edu nameservers? "dig -t NS +noall +answer stanford.edu"

where is web.stanford.edu? "dig -t A +noall +answer web.stanford.edu"

14

IP Addresses and Ports
IP addresses let us identify the machine we want to communicate with

DNS lets us look up the IP address for a given name

Another problem: what if we want to run multiple networked programs per machine?

Limiting if we can only e.g. ssh or have a web server on one machine

Solution: every networked program running is assigned a unique port number

mail analogy: IP address = Stanford dorm, port number = dorm room number

When you wish to connect to a program on another machine, you must specify both

the IP Address of the machine and the port number assigned to that program

port numbers are like "virtual process IDs"

You can see some of the ports a computer is listening to with "netstat -plnt"

How do we remember port numbers? What if they can change each time we run?
15

IP Addresses and Ports
Key Idea: establish standard port numbers for some common types of programs

HTTP (internet traffic): port 80

SSH: port 22

DNS: port 53

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

For your own programs, generally try to stay away from established port numbers,

but otherwise, ports are up for grabs to any program that wants one.

Your web browser takes an entered URL, uses DNS to look up the IP address, and sends

a request to that IP address, port 80 for the webpage you requested.

A server program will run on a machine and be assigned a port number

A client program wishing to connect to that server must send a request to that port

number at that IP address.
16

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

So how can we write code that
communicates with another program?

17

Plan For Today
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

18

Sockets and Descriptors
Linux uses the same descriptor abstraction for network connections as it does for

files!

You can open a connection to a program on another machine and you'll get back a

socket descriptor number referring to your descriptor table

A socket is the endpoint of a single connection over a port. It is represented as a

descriptor we can read from/write to.

You can read to / write from that descriptor to communicate

You close the descriptor when you're done

Like a pipe, but with only one descriptor, not two: network communication is

bidirectional, but usually the client and server speak one a time, not simultaneously.

"socket descriptor" is to "port number" as "file descriptor" is to "filename"

19

Key Idea: networking is remote function
call and return.

20

Plan For Today
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

21

Our First Client Program
Let's write our first program that sends a request to a server!

Example: I am running a server on myth64.stanford.edu, port 12345 that can tell you

the current time

Whenever a client connects to it, the server sends back the time as text. The client

doesn't need to send any data.

// Opens a connection to a server (returns kClientSocketError on error)
int createClientSocket(const string& host, unsigned short port);

New helper function to connect to a server:

(Later on, we will learn how to implement createClientSocket!)

22

Our First Client Program
I am running a server on myth64.stanford.edu, port 12345 that can tell you the current

time. Whenever a client connects to it, the server sends back the time as text.
int main(int argc, char *argv[]) {
 // Open a connection to the server
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

 // Read in the data from the server (assumed to be at most 1024 byte string)
 char buf[1024];
 size_t bytes_read = 0;
 while (true) {
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);
 if (read_this_time == 0) break;
 bytes_read += read_this_time;
 }
 buf[bytes_read] = '\0';
 close(socketDescriptor);

 // print the data from the server
 cout << buf << flush;
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

 // Open a connection to the server
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

 // Read in the data from the server (assumed to be at most 1024 byte string)
 char buf[1024];
 size_t bytes_read = 0;
 while (true) {
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);
 if (read_this_time == 0) break;
 bytes_read += read_this_time;
 }
 buf[bytes_read] = '\0';
 close(socketDescriptor);

 // print the data from the server
 cout << buf << flush;
 return 0;
}

int main(int argc, char *argv[]) {1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

 close(socketDescriptor);

 // print the data from the server
 cout << buf << flush;

int main(int argc, char *argv[]) {1
 // Open a connection to the server2
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);3
 4
 // Read in the data from the server (assumed to be at most 1024 byte string)5
 char buf[1024];6
 size_t bytes_read = 0;7
 while (true) {8
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);9
 if (read_this_time == 0) break;10
 bytes_read += read_this_time;11
 }12
 buf[bytes_read] = '\0';13

14
15
16
17

 return 0;18
}19

int main(int argc, char *argv[]) {
 // Open a connection to the server
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

 // Read in the data from the server (assumed to be at most 1024 byte string)
 char buf[1024];
 size_t bytes_read = 0;
 while (true) {
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);
 if (read_this_time == 0) break;
 bytes_read += read_this_time;
 }
 buf[bytes_read] = '\0';
 close(socketDescriptor);

 // print the data from the server
 cout << buf << flush;
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

time-client-descriptor.cc
23

http://web.stanford.edu/class/cs110/examples/networking/lect20/time-client-descriptor.cc

Client Sockets
Client sockets work similarly to regular file descriptors - we open one, read from/write to

it, and close it.
int main(int argc, char *argv[]) {
 // Open a connection to the server
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

 // Read in the data from the server (assumed to be at most 1024 byte string)
 char buf[1024];
 size_t bytes_read = 0;
 while (true) {
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);
 if (read_this_time == 0) break;
 bytes_read += read_this_time;
 }
 buf[bytes_read] = '\0';
 close(socketDescriptor);

 // print the data from the server
 cout << buf << flush;
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

time-client-descriptor.cc
24

http://web.stanford.edu/class/cs110/examples/networking/lect20/time-client-descriptor.cc

Using Socket Descriptors
Using read/write is cumbersome with socket descriptors. The socket++ library provides a

type iosockstream that let us wrap a socket descriptor in a stream (so that we can

read/write like we do with cout):

static string readLineFromSocket(int socketDescriptor) {
 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);
 string timeline;
 getline(socketStream, timeline);
 return timeline;
} // sockbuf destructor closes client

25

Our First Client Program
Here is a version of the same client program using sockbuf and iosockstream instead of

read:

 // Read in the data from the server (sockbuf descructor closes descriptor)
 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);
 string timeline;
 getline(socketStream, timeline);

 // Print the data from the server
 cout << timeline << endl;

int main(int argc, char *argv[]) {1
 // Open a connection to the server2
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);3
 4

5
6
7
8
9
10
11
12

 13
 return 0;14
}15

time-client.cc
26

http://web.stanford.edu/class/cs110/examples/networking/lect20/time-client.cc

Recap
Networking Overview

IP Addresses, DNS Lookup and Ports

Sockets and Descriptors

Our first client program

Next time: more about servers, data formats and protocols

27

