
CS110 Lecture 21: Servers and HTTP

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-21.pdf

CS110 Topic 4: How can we write programs
that communicate over a network with

other programs?

2

Learning About Networking

Introduction to
 Networking

Servers / HTTP
Clients, Servers

and APIs
Networking
System Calls

Lecture 20 Today Lecture 22 Lecture 23

assign6: implement an HTTP Proxy that sits between a client device and
a web server to monitor, block or modify web traffic.

3

Learning Goals
Gain more practice with the client-server model

Understand how to write our first server program

Get exposure to the HTTP protocol for making requests and responses

4

Plan For Today
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

5

Plan For Today
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

6

Networking So Far
Networking allows us to write code to send and receive data to/from a program running on

another machine.

Most networked programs rely on a pattern called the "client-server model". clients send

requests to servers, who listen for and respond to those requests

We can send any arbitrary bytes over the network, but the client and server usually agree on a

data format to use for requests and responses

If you wish to connect to a program on another machine, you must specify both the IP Address

of the machine and the port number assigned to that program

DNS lets us look up the IP address for a given name

You can open a connection to a program on another machine and you'll get back a socket

descriptor number referring to your descriptor table. You can read/write to it and close it.

A socket is the endpoint of a single connection over a port. "socket descriptor" is to "port number"
as "file descriptor" is to "filename"

7

Other Networking Questions (and CS144!)
There's much more to networking than we have time to cover. We are focusing on the

core ideas at the application level. Take CS144 if you're interested in learning more!

how is data packaged up to be sent over the network? (packets)

How does my data make it to the destination in one piece? (packet loss, TCP)

How do packets get routed across the network from one machine to another?

(diagram from cs144 slides) 8

Other Networking Questions (and CS142!)
We're writing short client/server programs and focusing on the core aspects of how

networked programs function. Take CS142 if you're interested in learning more about

writing servers and web-based programs!

9

Plan For Today
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

10

Our First Client Program
Let's write our first program that sends a request to a server!

Let's say I am running a server on myth64.stanford.edu, port 12345 that can tell you

the current time.

Whenever a client connects to it, the server sends back the time as text. The client

doesn't need to send any data.

Let's write a client program that connects and prints out what the server says.

// Opens a connection to a server (returns kClientSocketError on error)
int createClientSocket(const string& host, unsigned short port);

New CS110 helper function to connect to a server:

(Later on, we will learn how to implement createClientSocket!)

11

Our First Client Program
I am running a server on myth64.stanford.edu, port 12345 that can tell you the current

time. Whenever a client connects to it, the server sends back the time as text. This client

program connects to that server and prints the response using sockbuf/iosockstream.

int main(int argc, char *argv[]) {
 // Open a connection to the server
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

 // Read in the data from the server (sockbuf descructor closes descriptor)
 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);
 string timeline;
 getline(socketStream, timeline);

 // Print the data from the server
 cout << timeline << endl;

 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

time-client.cc

myth$./time-client
Fri Feb 25 08:15:22 2022
myth$

1
2
3

12

http://web.stanford.edu/class/cs110/examples/networking/lect20/time-client.cc

Key idea: there is no code in the client
that is itself calculating the current time.

All that logic is in the server that the
client connects to! Essentially "remote

function call and return".

13

Our First Client Program
sockbuf/iosockstream let us avoid calling read/write directly, which is more cumbersome

and is C-level instead of C++-level:

 // Read in the data from the server (assumed to be at most 1024 byte string)
 char buf[1024];
 size_t bytes_read = 0;
 while (true) {
 size_t read_this_time = read(socketDescriptor, buf + bytes_read, sizeof(buf) - bytes_read);
 if (read_this_time == 0) break;
 bytes_read += read_this_time;
 }
 buf[bytes_read] = '\0';
 close(socketDescriptor);

int main(int argc, char *argv[]) {1
 // Open a connection to the server2
 int socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);3
 4

5
6
7
8
9
10
11
12
13
14

 15
 // print the data from the server16
 cout << buf << flush;17
 return 0;18
}19

time-client-descriptor.cc
14

http://web.stanford.edu/class/cs110/examples/networking/lect20/time-client-descriptor.cc

Plan For Today
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

15

Our First Server Program
Let's write our first program that can respond to incoming requests!

Example: I want to run a server on myth64.stanford.edu, port 12345 that can tell you

the current time

Whenever a client connects to it, the server sends back the time as text. The client

doesn't need to send any data.

// Creates a socket to listen for incoming requests (returns kServerSocketFailure on error)
int createServerSocket(unsigned short port, int backlog = kDefaultBacklog);

New CS110 helper function to create a socket descriptor to listen for incoming

connections:

(Later on, we will learn how to implement createServerSocket!)

16

Server Sockets
Server sockets work slightly differently than regular file descriptors because we are

continually listening for incoming connections.

To actually wait for an incoming connection, we must call the accept function, which

returns a descriptor we can use to communicate with that client. We call this in a loop

to handle many incoming connections.

// Waits for an incoming connection and returns a descriptor for that connection
int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

The first parameter is the server socket. The rest are for getting information about

the client that is connecting, but we will pass in NULL for now.

Analogy: server socket is main operator fielding all calls, accept transfers you to an

agent to actually take your call.

17

Our First Server Program
This code runs a server on port 12345 that can tell you the current time. Whenever a

client connects to it, the server sends back the time as text.
int main(int argc, char *argv[]) {
 // Create a server socket we can use to listen for incoming requests
 int serverSocket = createServerSocket(12345);

 while (true) {
 // Wait for an incoming client connection and establish a descriptor for it
 int clientDescriptor = accept(serverSocket, NULL, NULL);

 // Make a string of the current date and time and send it to the client
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;
 }

 close(serverSocket);

 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

 // Create a server socket we can use to listen for incoming requests
 int serverSocket = createServerSocket(12345);

int main(int argc, char *argv[]) {1
2
3

 4
 while (true) {5
 // Wait for an incoming client connection and establish a descriptor for it6
 int clientDescriptor = accept(serverSocket, NULL, NULL);7
 8
 // Make a string of the current date and time and send it to the client9
 string dateTime = getCurrentDateTime();10
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket11
 iosockstream socketStream(&socketBuffer);12
 socketStream << dateTime << endl;13
 }14
 15
 close(serverSocket);16
 17
 return 0;18
}19

 while (true) {

int main(int argc, char *argv[]) {1
 // Create a server socket we can use to listen for incoming requests2
 int serverSocket = createServerSocket(12345);3
 4

5
 // Wait for an incoming client connection and establish a descriptor for it6
 int clientDescriptor = accept(serverSocket, NULL, NULL);7
 8
 // Make a string of the current date and time and send it to the client9
 string dateTime = getCurrentDateTime();10
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket11
 iosockstream socketStream(&socketBuffer);12
 socketStream << dateTime << endl;13
 }14
 15
 close(serverSocket);16
 17
 return 0;18
}19

 // Wait for an incoming client connection and establish a descriptor for it
 int clientDescriptor = accept(serverSocket, NULL, NULL);

int main(int argc, char *argv[]) {1
 // Create a server socket we can use to listen for incoming requests2
 int serverSocket = createServerSocket(12345);3
 4
 while (true) {5

6
7

 8
 // Make a string of the current date and time and send it to the client9
 string dateTime = getCurrentDateTime();10
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket11
 iosockstream socketStream(&socketBuffer);12
 socketStream << dateTime << endl;13
 }14
 15
 close(serverSocket);16
 17
 return 0;18
}19

 // Make a string of the current date and time and send it to the client
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;

int main(int argc, char *argv[]) {1
 // Create a server socket we can use to listen for incoming requests2
 int serverSocket = createServerSocket(12345);3
 4
 while (true) {5
 // Wait for an incoming client connection and establish a descriptor for it6
 int clientDescriptor = accept(serverSocket, NULL, NULL);7
 8

9
10
11
12
13

 }14
 15
 close(serverSocket);16
 17
 return 0;18
}19

int main(int argc, char *argv[]) {
 // Create a server socket we can use to listen for incoming requests
 int serverSocket = createServerSocket(12345);

 while (true) {
 // Wait for an incoming client connection and establish a descriptor for it
 int clientDescriptor = accept(serverSocket, NULL, NULL);

 // Make a string of the current date and time and send it to the client
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;
 }

 close(serverSocket);

 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

time-server-sequential.cc
18

http://web.stanford.edu/class/cs110/examples/networking/lect21/time-server-sequential.cc

Our First Server Program

// This function returns a string representation of the current date and time.
static string getCurrentDateTime() {
 time_t rawtime;
 time(&rawtime);
 struct tm tm;
 gmtime_r(&rawtime, &tm);
 char timestr[128]; // more than big enough
 /* size_t len = */ strftime(timestr, sizeof(timestr), "%c", &tm);
 return timestr;
}

1
2
3
4
5
6
7
8
9
10

The function that actually creates the time string is not important - it could be any kind of

data. The key takeaway is how the server listens for and responds to client connections.

19

Our First Server Program
Problem: servers may have many incoming connections at once. We need to be able to

handle connections concurrently!

Demo: let's see what happens when many requests come in at once.

Solution: we can use a thread pool to handle connections concurrently; every time we

receive a connection via accept, we will add a task to a thread pool to respond to the

connection request.

20

Our First (Concurrent) Server Program
int main(int argc, char *argv[]) {
 // Create a server socket we can use to listen for incoming requests
 int serverSocket = createServerSocket(12345);

 ThreadPool pool(kNumThreads);
 while (true) {
 // Wait for an incoming client connection and establish a descriptor for it
 int clientDescriptor = accept(serverSocket, NULL, NULL);

 // Add a task to make a string of the current date and time and send it to the client
 pool.schedule([clientDescriptor]() {
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;
 });
 }

 close(serverSocket);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 ThreadPool pool(kNumThreads);

int main(int argc, char *argv[]) {1
 // Create a server socket we can use to listen for incoming requests2
 int serverSocket = createServerSocket(12345);3
 4

5
 while (true) {6
 // Wait for an incoming client connection and establish a descriptor for it7
 int clientDescriptor = accept(serverSocket, NULL, NULL);8
 9
 // Add a task to make a string of the current date and time and send it to the client10
 pool.schedule([clientDescriptor]() {11
 string dateTime = getCurrentDateTime();12
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket13
 iosockstream socketStream(&socketBuffer);14
 socketStream << dateTime << endl;15
 });16
 }17
 18
 close(serverSocket);19
 return 0;20
}21

 // Add a task to make a string of the current date and time and send it to the client
 pool.schedule([clientDescriptor]() {
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;
 });

int main(int argc, char *argv[]) {1
 // Create a server socket we can use to listen for incoming requests2
 int serverSocket = createServerSocket(12345);3
 4
 ThreadPool pool(kNumThreads);5
 while (true) {6
 // Wait for an incoming client connection and establish a descriptor for it7
 int clientDescriptor = accept(serverSocket, NULL, NULL);8
 9

10
11
12
13
14
15
16

 }17
 18
 close(serverSocket);19
 return 0;20
}21

int main(int argc, char *argv[]) {
 // Create a server socket we can use to listen for incoming requests
 int serverSocket = createServerSocket(12345);

 ThreadPool pool(kNumThreads);
 while (true) {
 // Wait for an incoming client connection and establish a descriptor for it
 int clientDescriptor = accept(serverSocket, NULL, NULL);

 // Add a task to make a string of the current date and time and send it to the client
 pool.schedule([clientDescriptor]() {
 string dateTime = getCurrentDateTime();
 sockbuf socketBuffer(clientDescriptor); // destructor closes socket
 iosockstream socketStream(&socketBuffer);
 socketStream << dateTime << endl;
 });
 }

 close(serverSocket);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

This server adds tasks to a thread pool to concurrently respond to client connections.

time-server-concurrent.cc
21

http://web.stanford.edu/class/cs110/examples/networking/lect21/time-server-concurrent.cc

Takeaways: Clients and Servers
A client program can open a connection to a server, send request information, and

receive a response. We use createClientSocket to get a descriptor to read/write with.

A server program can listen on a port for incoming client requests, and respond to

them. We use createServerSocket to get a descriptor to listen with, and accept() to

accept incoming client connections and get descriptors to read/write with.

Servers greatly benefit from multithreading to parallelize handling incoming requests!

22

Plan For Today
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

23

Data Protocols
Our time server chose to send a raw single-line string response to a client. A client

connecting must be aware of this to know how to handle / use the response data.

Key idea: a client and server must agree on the format of the data being sent back and

forth so they know what to send and how to parse the response.

A protocol is a specification dictating how two computers should should converse. By

respecting a protocol, both the client and server know they'll understand each other.

HTTP ("HyperText Transfer Protocol") is the predominant protocol for Internet requests

and responses (e.g. webpages, web resources, web APIs).

24

HTTP
What happens when you type a URL into your web browser?

Your browser looks up the IP address of the site you entered

Your browser sends an HTTP request to that address on port 80 to get the webpage

The response payload data is usually text (such as HTML - HyperText Markup

Language) or other content that the browser can display

Note: a more secure version of HTTP, called HTTPS, is predominant today and encrypts

requests/responses. Most conversations happen over HTTPS, but we're focusing just on

HTTP.

25

HTTP Request Format
GET / HTTP/1.0
Host: www.google.com
...
[BLANK LINE]

The first line is the request line. It specifies
general information about the kind of
request and the protocol version. 3
components:
- request type ("verb" or "method")
- request path
- request protocol version

26

HTTP Request Format

GET / HTTP/1.0
"verb" or "method": what kind of request are we making?
- I wish to fetch a resource (GET)
- I wish to upload some new data (POST / PUT)
- I wish to get a preview of information about a resource (HEAD)

27

HTTP Request Format

GET / HTTP/1.0
"path": what server resource am I referring to?
- just the component after the host name

28

HTTP Request Format

GET / HTTP/1.0
"HTTP protocol version": what version of HTTP
am I speaking?

29

HTTP Request Format
GET / HTTP/1.0
Host: www.google.com
...
[BLANK LINE]

The second and onwards lines are each a
header included to provide more
information. They are key-value pairs.
Examples:
- Host ("what host am I sending this to?")
- Content-Type ("what type of content am
I uploading?")
- User-Agent ("what kind of user program
sent this request?")
- Cookie ("what cookie does the user have
for speaking to this server?")

30

HTTP Request Format
GET / HTTP/1.0
Host: www.google.com
...
[BLANK LINE] The request ends with a blank line.

31

HTTP Request Format
GET / HTTP/1.0
Host: www.google.com
...
[BLANK LINE]
{request body}

Some requests (like POST) that are
uploading data have a request *body*
after this blank line.

32

HTTP Response Format
HTTP/1.0 200 OK
Content-Type: text/html
[BLANK LINE]
{response body}

The first line is the status line. It specifies
general information about how the
request was handled and the protocol
version. 2 components:
- response protocol version
- response status code

33

HTTP Response Format

HTTP/1.0 200 OK
"HTTP protocol version": what version of HTTP
am I speaking?

34

HTTP Response Format

HTTP/1.0 200 OK
How did things go? Examples:
- A-ok! (20X)
- What you're looking for is somewhere else (30X)
- you did something wrong (40X)
- we did something wrong (50X)
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

35

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

HTTP Response Format

HTTP/1.0 200 OK
Some humorous status codes:
- 418 () - "Any attempt to
brew coffee with a teapot should result
in the error code "418 I'm a teapot". The
resulting entity body MAY be short
and stout."
- 451 ()

I'm a teapot

unavailable for legal reasons
36

https://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol
https://en.wikipedia.org/wiki/HTTP_451

HTTP Response Format
HTTP/1.0 200 OK
Content-Type: text/html
[BLANK LINE]
{response body}

The second and onwards lines are each a
header included to provide more
information. They are key-value pairs.
Examples:
- Content-Type ("what type of content am
I including?")
- Content-Length ("how much content am
I including?")
- Set-Cookie ("here's a cookie you should
remember for future requests")

37

HTTP Response Format
HTTP/1.0 200 OK
Content-Type: text/html
[BLANK LINE]
{response body}

Following a blank line, there is the
response body ("payload") containing data
the server sent back. E.g. HTML to
display.

38

Demo: HTTP Requests/Responses using
your browser and telnet

39

Recap
Recap: Networking So Far

Recap: Our first client program

Our first server program

Protocols and HTTP

Next time: More HTTP and servers

40

