
CS110 Lecture 22: HTTP and APIs

CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation 1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-22.pdf

CS110 Topic 4: How can we write programs
that communicate over a network with

other programs?

2

Learning About Networking

Introduction to
 Networking

Servers / HTTP HTTP and APIs
Networking
System Calls

Lecture 20 Lecture 21 Today Lecture 23

assign6: implement an HTTP Proxy that sits between a client device and
a web server to monitor, block or modify web traffic.

3

Learning Goals
Gain more practice with the client-server model

Understand the HTTP protocol for making requests and responses

Write a client program that makes HTTP requests

Write a server program that sends back HTTP responses

4

Plan For Today
Recap: Protocols and HTTP

HTTP Client Example: wget

HTTP Server Example: scrabble

5

Plan For Today
Recap: Protocols and HTTP

HTTP Client Example: wget

HTTP Server Example: scrabble

6

Data Protocols
Our time server chose to send a raw single-line string response to a client. A client

connecting must be aware of this to know how to handle / use the response data.

Key idea: a client and server must agree on the format of the data being sent back and

forth so they know what to send and how to parse the response.

A protocol is a specification dictating how two computers should should converse. By

respecting a protocol, both the client and server know they'll understand each other.

HTTP ("HyperText Transfer Protocol") is the predominant protocol for Internet requests

and responses (e.g. webpages, web resources, web APIs).

7

HTTP Request Format
GET / HTTP/1.0
Host: www.google.com
...
[BLANK LINE]
{request body?}

The first line is the request line. It specifies
general information about the kind of
request and the protocol version.
 Following that is a list of headers, 1 per
line, and sometimes a payload in the body.

8

HTTP Request Format
GET /posts?sort=recent&limit=10 HTTP/1.0

The path can have query parameters; these are key-value pairs that appear
after the "?" that can specify additional information about the request.

9

HTTP Response Format
HTTP/1.0 200 OK
Content-Type: text/html
[BLANK LINE]
{response body}

The first line is the status line. It specifies
general information about how the
request was handled and the protocol
version. Following that is a list of
headers, 1 per line, and the payload in the
body.

10

HTTP Response Format
HTTP response payloads contain the requested data. The payload format could be:

HTML (a webpage) for a browser

an image, file or other non-text data

JSON - "Javascript Object Notation": common text format for data types like maps,

lists, strings, etc. Used for sending data that can be parsed by another program.

or others (XML, etc.)

11

Demo: HTTP Requests/Responses using
your browser and telnet

12

Browser and Telnet
We can play around with HTTP requests and responses using browser tools and telnet.

Browser developer tools show all HTTP requests and responses being sent for us

telnet lets us "phone" a server and manually send/receive HTTP requests/responses

Both will be useful for testing assign6!

13

Plan For Today
Recap: Protocols and HTTP

HTTP Client Example: wget

HTTP Server Example: scrabble

14

wget
wget is a command line utility that, given a URL, downloads a single document (HTML

document, image, video, etc.) and saves a copy of it to the current working directory.

Let's see a quick demo

wget works by sending an HTTP GET request to the specified URL!

We can implement our own version called web-get that relies on our knowledge of

HTTP requests and responses to do the same thing.

15

web-get
web-get is a program that, given a URL, downloads a single document (HTML document,

image, video, etc.) and saves a copy of it to the current working directory.

1. parse the specified URL into the host and path components

2. Send an HTTP GET request to the server for that resource

3. Read through the server's HTTP response and save its payload data to a file

web-get.cc
16

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
int main(int argc, char *argv[]) {
 if (argc != 2) {
 cerr << "Usage: " << argv[0] << " <url>" << endl;
 return kWrongArgumentCount;
 }

 // string pair of <host, path>
 pair<string, string> hostAndPath = parseURL(argv[1]);
 fetchContent(hostAndPath.first, hostAndPath.second);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11

 // string pair of <host, path>
 pair<string, string> hostAndPath = parseURL(argv[1]);
 fetchContent(hostAndPath.first, hostAndPath.second);

int main(int argc, char *argv[]) {1
 if (argc != 2) {2
 cerr << "Usage: " << argv[0] << " <url>" << endl;3
 return kWrongArgumentCount;4
 }5
 6

7
8
9

 return 0;10
}11

Step 1: parse the specified URL into the host and path components

web-get.cc
17

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
Step 1: parse the specified URL into the host and path components

static pair<string, string> parseURL(string url) {
 // If the URL starts with the protocol e.g. http://, remove it
 if (startsWith(url, kProtocolPrefix)) {
 url = url.substr(kProtocolPrefix.size());
 }

 // Search for the first /
 size_t found = url.find('/');

 // If there is none, the path should be /
 if (found == string::npos) return make_pair(url, "/");

 // Otherwise, the host is what is before the /, and the path is after the /
 string host = url.substr(0, found);
 string path = url.substr(found);
 return make_pair(host, path);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

web-get.cc
18

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get

 fetchContent(hostAndPath.first, hostAndPath.second);

int main(int argc, char *argv[]) {1
 if (argc != 2) {2
 cerr << "Usage: " << argv[0] << " <url>" << endl;3
 return kWrongArgumentCount;4
 }5
 6
 // string pair of <host, path> 7
 pair<string, string> hostAndPath = parseURL(argv[1]);8

9
 return 0;10
}11

Step 2: Send an HTTP GET request to the server for that resource

web-get.cc
19

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
static void fetchContent(const string& host, const string& path) {
 // Create a connection to the server on the HTTP port
 int socketDescriptor = createClientSocket(host, kDefaultHTTPPort);
 if (socketDescriptor == kClientSocketError) {
 cerr << "Count not connect to host named \"" << host << "\"." << endl;
 return;
 }

 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);

 // Send our request (using HTTP/1.0 for simpler requests)
 socketStream << "GET " << path << " HTTP/1.0\r\n";
 socketStream << "Host: " << host << "\r\n";
 socketStream << "\r\n" << flush;

 readResponse(socketStream, getFileName(path));
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 // Create a connection to the server on the HTTP port
 int socketDescriptor = createClientSocket(host, kDefaultHTTPPort);
 if (socketDescriptor == kClientSocketError) {
 cerr << "Count not connect to host named \"" << host << "\"." << endl;
 return;
 }

static void fetchContent(const string& host, const string& path) {1
2
3
4
5
6
7

 8
 sockbuf socketBuffer(socketDescriptor);9
 iosockstream socketStream(&socketBuffer);10
 11
 // Send our request (using HTTP/1.0 for simpler requests)12
 socketStream << "GET " << path << " HTTP/1.0\r\n";13
 socketStream << "Host: " << host << "\r\n";14
 socketStream << "\r\n" << flush;15
 16
 readResponse(socketStream, getFileName(path));17
}18

 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);

static void fetchContent(const string& host, const string& path) {1
 // Create a connection to the server on the HTTP port2
 int socketDescriptor = createClientSocket(host, kDefaultHTTPPort);3
 if (socketDescriptor == kClientSocketError) {4
 cerr << "Count not connect to host named \"" << host << "\"." << endl;5
 return;6
 }7
 8

9
10

 11
 // Send our request (using HTTP/1.0 for simpler requests)12
 socketStream << "GET " << path << " HTTP/1.0\r\n";13
 socketStream << "Host: " << host << "\r\n";14
 socketStream << "\r\n" << flush;15
 16
 readResponse(socketStream, getFileName(path));17
}18

 // Send our request (using HTTP/1.0 for simpler requests)
 socketStream << "GET " << path << " HTTP/1.0\r\n";
 socketStream << "Host: " << host << "\r\n";
 socketStream << "\r\n" << flush;

static void fetchContent(const string& host, const string& path) {1
 // Create a connection to the server on the HTTP port2
 int socketDescriptor = createClientSocket(host, kDefaultHTTPPort);3
 if (socketDescriptor == kClientSocketError) {4
 cerr << "Count not connect to host named \"" << host << "\"." << endl;5
 return;6
 }7
 8
 sockbuf socketBuffer(socketDescriptor);9
 iosockstream socketStream(&socketBuffer);10
 11

12
13
14
15

 16
 readResponse(socketStream, getFileName(path));17
}18

static void fetchContent(const string& host, const string& path) {
 // Create a connection to the server on the HTTP port
 int socketDescriptor = createClientSocket(host, kDefaultHTTPPort);
 if (socketDescriptor == kClientSocketError) {
 cerr << "Count not connect to host named \"" << host << "\"." << endl;
 return;
 }

 sockbuf socketBuffer(socketDescriptor);
 iosockstream socketStream(&socketBuffer);

 // Send our request (using HTTP/1.0 for simpler requests)
 socketStream << "GET " << path << " HTTP/1.0\r\n";
 socketStream << "Host: " << host << "\r\n";
 socketStream << "\r\n" << flush;

 readResponse(socketStream, getFileName(path));
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Step 2: Send an HTTP GET request to the server for that resource

Note: It's standard
HTTP-protocol

practice that each line,
including the blank
line that marks the
end of the request,

end in CRLF (short for
carriage-return-line-

feed), which is '\r'
following by '\n'. We

must also flush!

web-get.cc
20

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
Step 3: Read through the server's HTTP response and save its payload data to a file

The server's response will contain a status line, headers, and a payload

We don't actually care about the status line or headers in this case - let's skip them.

 We must read them in (even if we don't need them) in order to get to the payload.

Once we get to the payload, we can save that part to a file

web-get.cc
21

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
Step 3: Read through the server's HTTP response and save its payload data to a file

static void readResponse(iosockstream& socketStream, const string& filename) {
 // Skip the status line and headers (we don't need any information from them)
 while (true) {
 string line;
 getline(socketStream, line);
 if (line.empty() || line == "\r") break;
 }

 readAndSavePayload(socketStream, filename);
}

1
2
3
4
5
6
7
8
9
10

We keep reading lines until we encounter one that is empty or "\r" (getline consumes the \n). That
means we have gotten to the payload. We include line.empty() in case the server forgot the "\r".

web-get.cc
22

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get
Step 3: Read through the server's HTTP response and save its payload data to a file

static void readAndSavePayload(iosockstream& socketStream, const string& filename) {
 ofstream output(filename, ios::binary); // don't assume it's text
 size_t totalBytes = 0;
 while (!socketStream.fail()) {
 char buffer[kBufferSizeBytes] = {'\0'};
 socketStream.read(buffer, sizeof(buffer));
 totalBytes += socketStream.gcount();
 output.write(buffer, socketStream.gcount());
 }
 cout << "Total number of bytes fetched: " << totalBytes << endl;
}

1
2
3
4
5
6
7
8
9
10
11

We won't focus too much on the intricacies of this function, but it reads the rest of the response as
binary data, and saves it to a file in chunks. Once the server sends the payload, it closes its end of
the connection which the client sees as "EOF".

web-get.cc
23

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

Plan For Today
Recap: Protocols and HTTP

HTTP Client Example: wget

HTTP Server Example: scrabble

24

HTTP Server: Scrabble Word Finder
Let's write a web application for finding valid scrabble words given certain letters.

scrabble-word-finder-server.cc
25

http://web.stanford.edu/class/cs110/examples/networking/lect22/scrabble-word-finder-server.cc

Web Applications
ServerClient

BROWSER: scrabble-words.com, please!

sure, here's HTML for that page.

26

https://www.freepnglogos.com/pics/server

Web Applications
ServerClient

WEBPAGE: scrabble words for "aebght", please!

sure, here's a list of words.

27

https://www.freepnglogos.com/pics/server

Mobile Applications
ServerClient

APP: scrabble words for "aebght", please!

sure, here's a list of words.

28

https://www.freepnglogos.com/pics/server
https://commons.wikimedia.org/wiki/File:Smartphone_icon_-_Noun_Project_283536.svg

Web Applications and APIs
A web server can handle different types of requests. Some can send back HTML for a

browser, others can be for non-HTML data for programs or webpages to parse.

A web application is like a "dynamic webpage" - the page can make more requests to the

server while the user interacts with it.

A web API (Application Programming Interface) is the list of request types that a given

server can handle

More generally: an API is a set of functions one can use in order to build a larger

piece of software.

APIs can be functions you import (like #include <stdio.h>) or types of requests

servers can respond to (like the , or other web APIs like or).NASA API this this

Any kind of program can send/receive HTTP requests - webpages, apps, etc. When

building a product, you may have the same server API used by your webpage and

app. 29

https://api.nasa.gov/
https://pokeapi.co/
https://poems.one/api/poem/

Recap
Recap: Protocols and HTTP

HTTP Client Example: wget

HTTP Server Example: scrabble

Next time: implementing scrabble server, and learning about how

createClientSocket and createServerSocket are implemented.

30

