CS110 Lecture 23: APIs and Networking
Functions

CS110: Principles of Computer Systems
Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-23.pdf

CS110 Topic 4: How can we write programs
that communicate over a network with
other programs?

Learning About Networking

~

o

o

HTTP and APls

J

™ s ™ s
Introductlc?n to * Servers /HTTP *
Networking
J _ J \
Lecture 20 Lecture 21

Lecture 22 Today

assigné: implement an HTTP Proxy that sits between a client device and
a web server to monitor, block or modify web traffic.

Learning Goals

e Gain more practice with the client-server model
e Write a server program that sends HTTP responses and supports a web application
e | earn about the implementations of createClientSocket and createServerSocket

Plan For Today

e Recap: wget and Web APlIs
e HTTP Server Example: scrabble
e Implementing createClientSocket

Plan For Today

e Recap: wget and Web APlIs
e HTTP Server Example: scrabble
e |[mplementing createClientSocket

web-get

web-get is a program that, given a URL, downloads a single document (HTML document,
image, video, etc.) and saves a copy of it to the current working directory.

1. parse the specified URL into the host and path components
2.Send an HTTP GET request to the server for that resource
3. Read through the server's HTTP response and save its payload data to a file

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get

Step 2: Send an HTTP GET request to the server for that resource

OO WD K

fetchContent (string& host, string& path) ({ Note: It's standard
socketDescriptor = createClientSocket (host, kDefaultHTTPPort); HTTP'pl"OtOCOI
(socketDescriptor == kClientSocketError) { . .
cerr << "Count not connect to host named \"" << host << "\"." << endl; praCtlce that eaCh Ilne’
; including the blank
} .
line that marks the
sockbuf socketBuffer (socketDescriptor); end Of the request
)

iosockstream socketStream(&socketBuffer);

end in CRLF (short for

socketStream << "GET " << path << " HTTP/1.0\r\n"; Carrlage'retum'llne'

socketStream << "Host: " << host << "\r\n"; feed) WhICh iS |\r|
socketStream << "\r\n" << flush; ’

following by "\n'. We

readResponse (socketStream, getFileName(path)); must a ISO ﬂ USh I

web-get.

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

web-get

Step 3: Read through the server's HTTP response and save its payload data to a file

readResponse (iosockstream& socketStream, string& filename) {

() {
string line;
getline(socketStream, line);
(line.empty() || line == "\r")

}

readAndSavePayload (socketStream, filename);

}

1
2
3
4
5
6
7
8
9
0]

[

We keep reading lines until we encounter one that is empty or "\r" (getline consumes the \n). That
means we have gotten to the payload. We include line.empty() in case the server forgot the "\r".

web-get.cc

http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc
http://web.stanford.edu/class/cs110/examples/networking/lect22/web-get.cc

HTTP Server: Scrabble Word Finder

Let's write a web application for finding valid scrabble words given certain letters.

Not Secure — 50.stanford.edu C + »

Scrabble Word Finder

Letters:

Scrabble words:

abet
ae
ag
age
ah
at
ate
ba
bag

e —————————————

scrabble-word-finder-server.cc

10

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Web Applications and APlIs

e A web server can handle different types of requests. Some can send back HTML for a
browser, others can be for non-HTML data for programs or webpages to parse.

e A web application is like a "dynamic webpage" - the page can make more requests to
the server while the user interacts with it.

e A web API (Application Programming Interface) is the list of request types that a given
server can handle. More generally: an APl is a set of functions one can use in order to
build a larger piece of software.

e How do you design an API? Similar question: how do you decide what functions your
program will have? And which are public or private?

= For Web APIs, like for function APls, it can be useful to browse other publicly
available APIs for design patterns.

11

Plan For Today

e Recap: wget and Web APlIs
e HTTP Server Example: scrabble
e Implementing createClientSocket

12

Scrabble Word Finder

We are going to build a web application that lets users find valid scrabble words given
certain letters.

e We will write a web server that can respond to 2 different types of requests:

1. requesting /" will send back HTML for the web application homepage

2. requesting "/words?letters=[LETTERS]" will send back non-HTML text with a list of
valid words using those letters

e The HTML sent back for request type #1 will contain code that sends a request of type
#2 whenever the user clicks the "submit" button.

e Other developers could also use request type #2 (our API) in their programs or
websites to get a list of words given specified letters.

scrabble-word-finder-server.cc

13

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

scrabble-word-finder-server is a server that can respond to requests for an HTML page,
and requests for a list of words given specified letters.

1. open a server socket and listen for incoming HTTP requests

2. when we receive a request, parse it to determine whether its path is /" (meaning we
should send back an HTML page) or "/words" (we should send back a list of words)

3. Ifit's for /", read in the file "scrabble-word-finder.html" and send the HTML back in an
HTTP response

4. If it's for "/words", compute a list of valid words using the letters in the query params
and send it back inan HTTP response in JSON format

scrabble-word-finder-server.cc

14

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 1: open a server socket and listen for incoming HTTP requests

main (argc, *argv[]) {
port = atoi(argv[l]);
serverSocket = createServerSocket (port);

cout << "Server listening on port " << port << "." << endl;
ThreadPool pool (kNumThreads) ;

() {

clientDescriptor = accept (serverSocket,)i

pool.schedule([clientDescriptor] () {
sockbuf socketBuffer(clientDescriptor);
iosockstream socketStream(&socketBuffer);
handleRequest (socketStream);

scrabble-word-finder-server.cc

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 2: when we receive a request, parse it to see whether its path is /" or "/words?...

handleRequest (iosockstream& socketStream) ({
string method;
string path;
string protocol;

socketStream >> method >> path >> protocol;

queryParamsStart = path.find("?");
string queryParams = "";
(queryParamsStart != string::npos) {
queryParams = path.substr (queryParamsStart + 1);

path = path.substr (0, queryParamsStart);
}

scrabble-word-finder-server.cc

16

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 2: when we receive a request, parse it to see whether its path is /" or "/words?...".

string newline;
getline(socketStream, newline);

() |
string line;
getline(socketStream, line);
(line.empty() || line == "\r")

(path == "/") {

scrabble-word-finder-server.cc

17

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 3: If it's for /", read in the file "scrabble-word-finder.html" and send the HTML back.

string payload;
string contentType;

(path == "/") {

ifstream fileStream('"scrabble-word-finder.html");
std::stringstream fileStringStream;
fileStringStream << fileStream.rdbuf();

payload = fileStringStream.str();

contentType = "text/html; charset=UTF-8";

(«o0) {
}

sendResponse (socketStream, payload, contentType);

scrabble-word-finder-server.cc

18

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 3: If it's for /", read in the file "scrabble-word-finder.html" and send the HTML back.

sendResponse (iosockstream& socketStream, string& payload,
socketStream << "HTTP/1.1 200 OK\r\n";
socketStream << "Content-Type: " << contentType << "\r\n";

socketStream << "Content-Length: " << payload.size() << "\r\n";
socketStream << "\r\n";
socketStream << payload << flush;

scrabble-word-finder-server.cc

string& contentType) {

19

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 4: If it's for "/words?letters=XXXX", compute a list of valid words with those letters

and send it back in JSON format.

string payload;
string contentType;

(path == "/") {

(path == "/words" && queryParams.find("letters=") != string::npos) {

string letters = queryParams.substr(queryParams.find("letters=") + string("letters=").length());

sort (letters.begin(), letters.end());
vector<string> formableWords;

findFormableWords (letters, formableWords);
payload = constructJSONPayload(formableWords);
contentType = "text/javascript; charset=UTF-8";

} {
}

sendResponse (socketStream, payload, contentType);

{
scrabble-word-finder-server.cc)

"possibilities": ["wordl",

"word2"]

20

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

We need a way to get a list of valid words given a set of characters.

We could write the code in the server itself to do this - but there's an alternative.
Sometimes we may have a provided executable program that does what we need.
Here let's say we have a command called scrabble-word-finder that takes letters and
prints out words with those letters, one word per line

Question: how can we leverage this program's functionality and not re-implement it?

Idea: let's use subprocess() from multiprocessing to run it in a child process and capture
its output!

Example of abstraction - client doesn't know how server works, server doesn't know
how word finder code works.

Way to "wrap an executable with a server to make it available to clients"

21

subprocess

We have implemented a custom function called subprocess:

subprocess (*argv[], supplyChildInput, ingestChildOutput);

subprocess spawns a child process to run the specified command, and can optionally set
up pipes we can use to write to the child's STDIN and/or read from its STDOUT.

It returns a struct containing:
e the PID of the child process

e afile descriptor we can use to write to the child's STDIN (if requested)
e 3 file descriptor we can use to read from the child's STDOUT (if requested)

22

Scrabble Word Finder Server

Step 4: Otherwise, compute a list of valid words with those letters and send it back in
JSON format.

findFormableWords (string& letters, vector<string>& formableWords) {

*command[] = {"./scrabble-word-finder", letters.c_str(), };
sp = subprocess(< **>(command), ')7

stdio_ filebuf< > inbuf(sp.ingestfd, ios::in);
istream instream(&inbuf);

() {

string word;

getline(instream, word);
(instream.fail()) .

formableWords.push back (word) ;

}

waitpid(sp.pid, r 0);

scrabble-word-finder-server.cc

23

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 4: Otherwise, compute a list of valid words with those letters and send it back in
JSON format.

13 payload = constructJSONPayload(formableWords);

scrabble-word-finder-server.cc

24

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 4: Otherwise, compute a list of valid words with those letters and send it back in
JSON format.

string constructJSONPayload (vector<string>& possibilities) {

ostringstream payload;
payload << "{" << endl;
payload << " \"possibilities\": [";

(i =0 ; i < possibilities.size(); i++) {
payload << "\"" << possibilities[i] << "\"";
(i < possibilities.size() - 1) payload << ", ";

}

payload << "]" << endl << "}" << endl;
payload.str();

{
"possibilities": ["wordl", "word2"]

scrabble-word-finder-server.cc)

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder Server

Step 4: Otherwise, compute a list of valid words with those letters and send it back in
JSON format.

sendResponse (iosockstream& socketStream, string& payload,
socketStream << "HTTP/1.1 200 OK\r\n";
socketStream << "Content-Type: " << contentType << "\r\n";

socketStream << "Content-Length: " << payload.size() << "\r\n";
socketStream << "\r\n";
socketStream << payload << flush;

scrabble-word-finder-server.cc

26

http://web.stanford.edu/class/cs110/examples/networking/lect23/scrabble-word-finder-server.cc

Scrabble Word Finder HTML

"javascript:void(0);"
"letters"” "form-label">Letters:
"text" "form-control" "letters" "letters"
"submit"” "btn btn-primary" "getWords () ">Submit

"scrabbleWords"

WO NOULbBWDN R

=
O

getWords () {
letters = document.getElementById("letters").value;
result = fetch("/words?letters=" + letters, {method:"GET"}).then(data => {
data.json()
}) .then(res => {
possibilitiesStr = "";
(i =0; i < res.possibilities.length; i++) {
possibilitiesStr += res.possibilities[i]+"
";

N N
00 ~NOoO\U B WN

}

document .getElementById("scrabbleWords").innerHTML = "<p>Scrabble words:</p>" + possibilitiesStr;
}) .catch(error =>
console.log(error)

N NMNDNMNDMDDNDRE
> W NhNE= O LV

|>_|scrabble—word—finder—server.cc

http://web.stanford.edu/class/cs110/examples/networking/lect22/scrabble-word-finder-server.cc

HTTP Key Takeaways

a client and server must agree on the format of the data being sent back and forth so
they know what to send and how to parse the response.

HTTP ("HyperText Transfer Protocol") is the predominant protocol for Internet
requests and responses (e.g. webpages, web resources, web APIs).

HTTP can be used to respond with data in any format: HTTP, JSON, images, etc.
You should know the core components of requests and responses (request lines,
headers, status line, payloads, etc.) but don't get too caught up in the specifics of
different headers and other smaller details.

There are many libraries for easily making HT TP requests and responses - we often
don't code them out manually.

On assigné, you'll be intercepting HT TP requests, possibly modifying them slightly,
forwarding them to a server, and delivering the response back to the original client.

28

Plan For Today

e Recap: wget and Web APlIs
e HTTP Server Example: scrabble
e Implementing createClientSocket

29

createClientSocket and createServerSocket

Let's see the underlying system calls and library functions needed to implement
createClientSocket and createServerSocket!

e Goal: to see the kinds of functions required (you won't have to re-implement
createClientSocket or createServerSocket)
e Goal: to see the design decisions and language workarounds involved

30

Clients

We have used createClientSocket in client programs so far to connect to servers. It gives
us back a descriptor we can use to read/write data.

socketDescriptor = createClientSocket("myth64.stanford.edu", 12345);

But how is the createClientSocket helper function actually implemented?

31

createClientSocket

createClientSocket (string& host,

1. Check that the specified server and port are valid

2. Create a new socket descriptor
3. Associate this socket descriptor with a connection to that server

4. Return the socket descriptor

32

createClientSocket

createClientSocket (string& host, port);

1. Check that the specified server and port are valid - gethostbyname()

2. Create a new socket descriptor - socket()
3. Associate this socket descriptor with a connection to that server - connect()

4. Return the socket descriptor

33

createClientSocket

createClientSocket (string& host, port);

1. Check that the specified server and port are valid - gethostbyname()

2. Create a new socket descriptor - socket()
3. Associate this socket descriptor with a connection to that server - connect()

4. Return the socket descriptor

34

createClientSocket

e We check the validity of the host by attempting to look up their IP address

o gethostbyname() gets IPV4 host info for the given name (e.g. "www.facebook.com")

e gethostbyname2() can get IPV6 host info for the given name - second param can be AF_INET
(for IPv4) or AF_INET®6 (for IPvé6)

o gethostbyaddr() gets host info for the given IPv4 address (e.g. "31.13.75.17")

= First argument is the base address of a character array with ASCII values of 171, 64, 64, and
137 in network byte order. For IPv4, the second argument isusually sizeof (struct
in_addr) and the third the AF_INET constant.

e These are technically deprecated in favor of getAddrinfo, but still prevalent and good to know
o All return astatically allocated struct hostent with host's info (or NULL if error)

struct hostent *gethostbyname(const char #*name);
struct hostent *gethostbyname2(const char *name, int af);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

35

createClientSocket

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyname2(const char *name, int af);

struct hostent *gethostbyaddr(const char *addr, int len, int type);

Wait a minute - gethostbyname and gethostbyname2 will give back different info (IPv4 vs. IPvé
addresses). How can the return type be the same?

o Key Ildea: struct hostent will have a generic field in it which is a list of addresses; depending on
whether it's IPv4 or IPvé6, the list will be of a different type, and we can cast it to that type.

36

gethostbyname ()

struct in_addr { Note:h addr_ lististypedtobea
unsigned int s_addr char * array, but for IPv4 records it's
really struct in_addr **,sowe
cast it to thatinour code.

}i

struct hostent {

char *h_name;

Why the confusion?

char **h_aliases;

h_addr_list needs to represent an
dalis 1 FEEA AR array of pointers to IP addresses.
struct hostent must be generic
Lol JlEnegin g and work with e.g. both IPv4 and
|Pvé hosts.
Thus, h_addr_list could be an array
of in_addr *s (IPv4) or an array of
in6_addr *s (IPvé6).
No void * back then, so char ** it is.

char **h_addr_list;

createClientSocket

1. Check that the specified server and port are valid - gethostbyname()

int createClientSocket (const string& host, unsigned short port) {
struct hostent *he = gethostbyname(host.c str());

if (he == NULL) return -1;

38

createClientSocket

1. Check that the specified server and port are valid - gethostbyname()
2. Create a new socket descriptor - socket()

socket (domain, type, protocol);

createClientSocket (string& host,

s = socket (AF_INET, SOCK_STREAM, O0);
(s < 0) -1;

The socket function creates a socket endpoint and returns a descriptor.

e The first parameter is the protocol family (IPv4, IPvé, Bluetooth, etc.).

e The second parameter is the type of the connection - do we want a reliable 2-way connection,
unreliable connection, etc.?

e The third parameter is the protocol (O for default)

39

createClientSocket

1. Check that the specified server and port are valid - gethostbyname()
2. Create a new socket descriptor - socket()
3. Associate this socket descriptor with a connection to that server - connect()

connect (clientfd, struct sockaddr *addr, addrlen);

connect connects the specified socket to the specified address.

e \Wait a minute - we could be using IPv4 or IPv6. How can we have the same parameter
types for both?

40

connect()

connect (clientfd, struct sockaddr *addr, addrlen);

There are actually multiple different types of we may want to pass in. sockaddr_in and
sockaddr_in6. How can we handle these possibilities? C doesn't support inheritance or templates.

e Firstidea: we could make a new version of connect for each type (not great)
e Second idea: we could specify the parameter type as void * (but then how would we know the

real type?)
e Third idea: we could make the parameter type a "parent type" called sockaddr, which will have

the same memory layout as sockaddr_in and sockaddr_iné.
m |ts structureis a 2 byte type field followed by 14 bytes of something.
= Both sockaddr_in and sockaddr_iné will start with that 2 byte type field, and use the

remaining 14 bytes for whatever they want.
= connect can then check the type field before casting to the appropriate type

41

connect()

connect (clientfd, struct sockaddr *addr, addrlen);

We will make the parameter type a "parent type" called sockaddr, which will have the same
memory layout as sockaddr_in and sockaddr_iné. Its structure is a 2 byte type field followed by 14
bytes of something. Both sockaddr_in and sockaddr_iné will start with that 2 byte type field, and
use the remaining 14 bytes for whatever they want.

sockaddr {
sa_family;
sa_data[1l4];

sockaddr_in6 {
sin6_family;
sin6_port;
sin6_flowinfo;
in6_addr siné6_addr;
sin6_scope_ id;

sockaddr_in {
sin_family;
sin_port;
in_addr sin_addr;
sin_zero[8];

sockaddr_in

sockaddr_in {
sin_family;
sin_port;

in_addr sin_addr;
sin zero[8];

The sin family field should always be initialized to be AF_INET for IPv4 to
distinguish what struct type it really is.
The sin_port field stores a port number in network byte order.

= Different machines may store multi-byte values in different orders (big endian,
little endian). But network data must be sent in a consistent format.

The sin_addr field stores the IPv4 address
The sin zero field represents the remaining 8 bytes that are unused.

43

sockaddr_in6

sockaddr_in6 {
sin6_family;
sin6_port;

sin6_flowinfo;
in6é_addr siné6_addr;
sin6_scope_id;

The sin6 family field should always be initialized to be AF_ INET®6 for IPvé6 to
distinguish what struct type it really is.

The sin6_port field stores a port number in network byte order.

The sin6_addr field stores the IPvé6 address

sin6é flowinfoandsin6 scope_ id are beyond the scope of what we need, so
we'll ignore them.

44

createClientSocket

1. Check that the specified server and port are valid - gethostbyname()
2. Create a new socket descriptor - socket()
3. Associate this socket descriptor with a connection to that server - connect()

createClientSocket (string& host,

sockaddr _in address;
memset (&address, O, (address));
address.sin_family = AF_INET;
address.sin_port = htons(port);

address.sin_addr = *((struct in_addr *)he->h_addr);
(connect (s, (struct sockaddr *) &address, (address)) == 0)

1
2
3
4
5
6
7
8
9
0
1

1
1

htons is "host to network short" - it converts to network byte order, which may or may not
be the same as the byte order your machine uses.

45

createClientSocket

1. Check that the specified server and port are valid - gethostbyname()

2. Create a new socket descriptor - socket()

3. Associate this socket descriptor with a connection to that server - connect()
4. Return the socket descriptor

createClientSocket (string& host,
hostent *he = gethostbyname(host.c_str());
(he ==) -1;
s = socket (AF_INET, SOCK _STREAM, 0);
(s < 0) -1;
sockaddr_in address;
memset (&address, O, (address));
address.sin_family = AF_INET;
address.sin_port = htons(port);

O~V WDN M

address.sin_addr = *((struct in_addr *)he->h_addr);
(connect (s, (struct sockaddr *) &address, (address)) == 0)

close(s);
_1;

Recap

e Recap: wget and Web APlIs
e HTTP Server Example: scrabble
e Implementing createClientSocket

Next time: Distributed systems and MapReduce

47

