
CS110 Lecture 5: File Descriptors, System
Calls and Multiprocessing
CS110: Principles of Computer Systems

Winter 2021-2022
Stanford University
Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation
1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-5.pdf

CS110 Topic 1: How can we design
filesystems to store and manipulate files on

disk, and how can we interact with the
filesystem in our programs?

2

Learning About Filesystems

Unix v6
Filesystem

design, part 1
(files)

Unix v6
Filesystem

design, part 2
(large files +
directories)

Interacting with
the filesystem

from our
programs

Lecture 2 Lecture 3 This Lecture

assign2: implement portions of a filesystem!

3

Learning Goals
Understand the use and versatility of file descriptors
Learn how file descriptors are used by the operating system to manage open files
Learn how system calls are made while preserving privacy and security
Become familiar with how to write a program that spawns another program

4

Lecture Plan
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures
How are system calls made?
Introduction to multiprocessing

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/996212

5

https://edstem.org/us/courses/16701/discussion/996212

Lecture Plan
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures
How are system calls made?
Introduction to multiprocessing

6

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
A system call is a public function provided by the operating system. They are tasks
the operating system can do for us that we can't do ourselves.
open(), close(), read() and write() are 4 system calls we use to interact with files.

7

open()
A function that a program can call to open a file, and potentially create a file:

// if opening an existing file
int open(const char *pathname, int flags);

// if there's potential to create a new file
int open(const char *pathname, int flags, mode_t mode);

pathname: the path to the file you wish to open
flags: a bitwise OR of options specifying the behavior for opening the file
mode (if applicable): the permissions to attempt to set for a created file
the return value is a file descriptor representing the opened file, or -1 on error

Many possible flags (see man page). You must include exactly one of O_RDONLY, O_WRONLY,
O_RDWR.
O_TRUNC: if the file exists already, clear it ("truncate it").
O_CREAT: if the file doesn't exist, create it
O EXCL th fil t b t d f t h f il if l d i t

8

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
It is a unique number assigned by the operating system to refer to that file
Each program has its own file descriptors
When you wish to refer to the file (e.g. read from it, write to it) you must provide the
file descriptor.
[NEW] file descriptors are assigned in ascending order (next FD is lowest unused)

9

close()
A function that a program can call to close a file when done with it.

int close(int fd);

It's important to close files when you are done with them to preserve system resources.

fd: the file descriptor you'd like to close.

You can use valgrind to check if you forgot to close any files.

10

read() and write()
// read bytes from an open file
ssize_t read(int fd, void *buf, size_t count);

fd: the file descriptor for the file you'd like to read from
buf: the memory location where the read-in bytes should be put
count: the number of bytes you wish to read
The function returns -1 on error, 0 if at end of file, or nonzero if bytes were read (may not
read all bytes you ask it to!)

// write bytes to an open file
ssize_t write(int fd, const void *buf, size_t count);

Same as read(), except the function writes the count bytes in buf to the file, and returns the number of
bytes written.

11

Example: Copy
The copy program emulates cp ; it copies the contents of a source file to a specified destination.

 and (with error checking)copy-soln.c copy-soln-full.c

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;

 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);
 bytesWritten += count;
 }
 }
}

int main(int argc, char *argv[]) {
 int sourceFD = open(argv[1], O_RDONLY);
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

 copyContents(sourceFD, destinationFD);

 close(sourceFD);
 close(destinationFD);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

 int sourceFD = open(argv[1], O_RDONLY);

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15

16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16

17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 char buffer[kCopyIncrement];
void copyContents(int sourceFD, int destinationFD) {1

2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3

4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 while (bytesWritten < bytesRead) {

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7

8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8

9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21
 close(destinationFD);22
 return 0;23
}24

 close(sourceFD);

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20

21
 close(destinationFD);22
 return 0;23
}24

 close(destinationFD);

void copyContents(int sourceFD, int destinationFD) {1
 char buffer[kCopyIncrement];2
 while (true) {3
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));4
 if (bytesRead == 0) break;5
 6
 size_t bytesWritten = 0;7
 while (bytesWritten < bytesRead) {8
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);9
 bytesWritten += count;10
 }11
 }12
}13
 14
int main(int argc, char *argv[]) {15
 int sourceFD = open(argv[1], O_RDONLY);16
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);17
 18
 copyContents(sourceFD, destinationFD);19
 20
 close(sourceFD);21

22
 return 0;23
}24

void copyContents(int sourceFD, int destinationFD) {
 char buffer[kCopyIncrement];
 while (true) {
 ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer));
 if (bytesRead == 0) break;

 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ssize_t count = write(destinationFD, buffer + bytesWritten, bytesRead - bytesWritten);
 bytesWritten += count;
 }
 }
}

int main(int argc, char *argv[]) {
 int sourceFD = open(argv[1], O_RDONLY);
 int destinationFD = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

 copyContents(sourceFD, destinationFD);

 close(sourceFD);
 close(destinationFD);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

12

https://web.stanford.edu/class/cs110/examples/filesystems/copy-soln.c
http://web.stanford.edu/class/cs110/examples/filesystems/copy-soln-full.c

File Descriptors
File descriptors are just integers - for that reason, we can store and access them just
like integers.

If you're interacting with many files, it may be helpful to have an array of file
descriptors

There are 3 special file descriptors provided by default to each program:

0: standard input (user input from the terminal) - STDIN_FILENO
1: standard output (output to the terminal) - STDOUT_FILENO
2: standard error (error output to the terminal) - STDERR_FILENO

[NEW] Programs always assume that 0,1,2 represent STDIN/STDOUT/STDERR. Even if
we change them! (eg. we close FD 1, then open a new file). (this is how
cat in.txt > out.txt works)

13

Example: Copy Extended

 and (with error checking)copy-extended-soln.c copy-extended-soln-full.c

The copy-extended program emulates tee ; it copies the contents of a source file to specified
destination(s), and also outputs it to the terminal.

// difference #1: an array of destination file descriptors
int destinationFDs[argc - 1];

// Include the terminal (STDOUT) as the first "file" so it's also printed
destinationFDs[0] = STDOUT_FILENO;

for (size_t i = 2; i < argc; i++) {
 destinationFDs[i - 1] = open(argv[i], O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);
}
...

1
2
3
4
5
6
7
8
9

10

// difference #2: we write each chunk to every destination
for (size_t i = 0; i < numDestinationFDs; i++) {
 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 ssize_t count = write(destinationFDs[i], buffer + bytesWritten, bytesRead - bytesWritten);
 bytesWritten += count;
 }
}
...

1
2
3
4
5
6
7
8
9

14

https://web.stanford.edu/class/cs110/examples/filesystems/copy-extended-soln.c
http://web.stanford.edu/class/cs110/examples/filesystems/copy-extended-soln-full.c

File descriptors are a powerful
abstraction for working with files and

other resources. They are used for files,
networking and user input/output!

15

Lecture Plan
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures

How are system calls made?
Introduction to multiprocessing

16

What is a file descriptor really mapping
to behind the scenes? How does the
operating system manage open files?

17

Filesystem Interaction: Layers

18

Operating System Data Structures
A process is a single instance of a program running
For each process, Linux maintains a process control block - a set of relevant
information about its execution (user who launched it, CPU state, etc.). These
blocks live in the process table.
A process control block also stores a file descriptor table. This is a list of info about
open files/resources for this process.
Key idea: a file descriptor is just an index into a file descriptor table!

19

Operating System Data Structures
An entry in the file descriptor table is really a pointer to an entry in another table, the
open file table.
The open file table is one array of information about open files across all processes.
Multiple file descriptor entries (even across processes!) can point to the same open
file table entry.
An open file table entry stores changing info like "cursor" (how far into file are we?)

20

Operating System Data Structures
This structure allows the OS to share resources across processes.
Also explains common behavior: e.g. multiple programs interleaving terminal output.
 This is because all FDs 0,1,2 usually point to the same open file table entries!
Problem: we could have multiple open file table entries referring to the same file. It
seems wasteful to store that file's static info many times....

21

Operating System Data Structures
Each open file table entry has a vnode field; a pointer to the file's static information.
vnodes live in the vnode table; a single table referenced by all open file table
entries. A vnode is an abstraction of a file; it includes information on what kind of
file it is, how many file table entries reference it, and function pointers for performing
operations. Also cache of inode (if exists).
These resources are all freed over time:

Free a file table entry when the last file descriptor closes it
Free a vnode when the last file table entry is freed
Free a file when its reference count is 0 and there is no vnode

22

Operating System Data Structures
FD table(s)

Open file
table

Vnode table

23

Operating System Data Structures
All of these data structures are private to the operating system. They are layered on
top of the filesystem data itself.

24

Lecture Plan
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures
How are system calls made?

Introduction to multiprocessing

25

System Call Execution
Key idea: the OS performs private, privileged tasks that regular user programs
cannot do, with data that user programs cannot access.
Problem: because of this, we can't have system calls behave like regular function
calls - there are security risks to having OS data in user-accessible memory!

E.g. loadFiles can poke around in main's
stack frame, or main can poke around in the
values left behind by loadFiles after it
finishes.
Functions are supposed to be modular, but
the function call and return protocol's support
for modularity and privacy is pretty soft.

26

Refresher: Function Call Semantics
Refresher: for a normal function call, the stack grows downwards to add a new stack
frame. Parameters are passed in registers like %rdi and %rsi, and the return value
(if any) is put in %rax.
This means stack frames are adjacent, and can in theory be manipulated via pointer
arithmetic when they're not supposed to
Solution: a range of addresses will be reserved as "kernel space"; user programs
cannot access this memory. Instead of using the user stack and memory space,
system calls will use kernel space and execute in a "privileged mode". But this
means function calls must work differently!

27

System Call Semantics
New approach for calling functions if they are system calls:

put the system call "opcode" in %rax (e.g. 0 for read, 1 for write, 2 for open, 3 for
close, and so forth). Each has its own unique opcode.
put up to 6 parameters in normal registers except for %rcx (use %r10 instead)
store the address of the next user program instruction in %rcx instead of %rip
The syscall assembly instruction triggers a software interrupt that switches execution
over to "superuser" mode.
The system call executes in privileged mode and puts its return value in %rax, and
returns (using iretq, "interrupt" version of retq)
If %rax is negative, the global errno is set to abs(%rax), and %rax is changed to -1.
The system transfers control back to the user program.

28

CS110 Topic 1: How can we design
filesystems to store and manipulate files on

disk, and how can we interact with the
filesystem in our programs?

29

CS110 Filesystems Recap
User programs interact with the filesystem via file

descriptors and the system calls open, close, read and write

The operating system stores a per-process file descriptor table
with pointers to open file table entries containing info about the
open files
The open file table entries point to vnodes, which cache
inodes
inodes are file system representations of files/directories. We
can look at an inode to find the blocks containing the
file/directory data.
Inodes can use indirect addressing to support large
files/directories
Key principles: abstraction, layers, naming

30

Lecture Plan
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures
How are system calls made?
Introduction to multiprocessing

31

CS110 Topic 2: How can our program
create and interact with other programs?

32

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

Multiprocessing Terminology

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 printf("Goodbye!\n");
 return 0;
}

1
2
3
4
5

 printf("Hello, world!\n");
int main(int argc, char *argv[]) {1

2
 printf("Goodbye!\n");3
 return 0;4
}5

 printf("Goodbye!\n");

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 return 0;4
}5

Process 5621

33

Your computer runs many processes simultaneously - even with just 1 processor core
(how?)

"simultaneously" = switch between them so fast humans don't notice
Your program thinks it's the only thing running
OS schedules processes - who gets to run when
Each process gets a little time, then has to wait
Many times, waiting is good! E.g. waiting for key press, waiting for disk
Caveat: multicore computers can truly multitask

Multiprocessing

34

Playing With Processes
When you run a program from the terminal, it runs in a new process.

The OS gives each process a unique "process ID" number (PID)
PIDs are useful once we start managing multiple processes
getpid() returns the PID of the current process
// getpid.c
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
 pid_t myPid = getpid();
 printf("My process ID is %d\n", myPid);
 return 0;
}

1
2
3
4
5
6
7
8
9

$./getpid
My process ID is 18814

$./getpid
My process ID is 18831

35

$./myprogram

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 fork();
 printf("Goodbye!\n");
 return 0;
}

1
2
3
4
5
6

Process A

36

$./myprogram
Hello, world!

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

 printf("Hello, world!\n");
int main(int argc, char *argv[]) {1

2
 fork();3
 printf("Goodbye!\n");4
 return 0;5
}6

 fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("Goodbye!\n");4
 return 0;5
}6

Process A

 printf("Hello, world!\n");
int main(int argc, char *argv[]) {1

2
 fork();3
 printf("Goodbye!\n");4
 return 0;5
}6

 fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("Goodbye!\n");4
 return 0;5
}6

Process A

37

$./myprogram
Hello, world!

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

 fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("Goodbye!\n");4
 return 0;5
}6

Process AProcess A

 fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("Goodbye!\n");4
 return 0;5
}6

Process B

38

$./myprogram
Hello, world!
Goodbye!
Goodbye!

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

 printf("Hello, world!\n");
int main(int argc, char *argv[]) {1

2
 fork();3
 printf("Goodbye!\n");4
 return 0;5
}6

 fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("Goodbye!\n");4
 return 0;5
}6

Process A

 printf("Goodbye!\n");

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 fork();3

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 fork();3
 printf("Goodbye!\n");4

5
}6

Process A

 printf("Goodbye!\n");

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 fork();3

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 fork();3
 printf("Goodbye!\n");4

5
}6

Process B

39

$./myprogram2

fork()
fork() creates a second process that is a clone of the first:

Process A

pid_t fork();

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

1
2
3
4
5
6
7

40

$./myprogram2
Hello, world!

fork()
fork() creates a second process that is a clone of the first:

Process A

pid_t fork();

 printf("Hello, world!\n");

int main(int argc, char *argv[]) {1
 int x = 2;2

3
 fork();4
 printf("Goodbye, %d!\n", x);5
 return 0;6
}7

 fork();

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3

4
 printf("Goodbye, %d!\n", x);5
 return 0;6
}7

41

$./myprogram2
Hello, world!

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

Process B

 fork();

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3

4
 printf("Goodbye, %d!\n", x);5
 return 0;6
}7

Process A

 fork();

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3

4
 printf("Goodbye, %d!\n", x);5
 return 0;6
}7

42

$./myprogram2
Hello, world!
Goodbye, 2!
Goodbye, 2!

fork()
fork() creates a second process that is a clone of the first:pid_t fork();

Process B

 printf("Goodbye, %d!\n", x);

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3
 fork();4

5
 return 0;6
}7
 return 0;

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3
 fork();4
 printf("Goodbye, %d!\n", x);5

6
}7

Process A

 printf("Goodbye, %d!\n", x);

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3
 fork();4

5
 return 0;6
}7
 return 0;

int main(int argc, char *argv[]) {1
 int x = 2;2
 printf("Hello, world!\n");3
 fork();4
 printf("Goodbye, %d!\n", x);5

6
}7

43

fork()
fork() creates a second process that is a clone of the first:

parent (original) process forks off a child (new) process
The child starts execution on the next program instruction. The parent continues execution with
the next program instruction. The order from now on is up to the OS!
fork() is called once, but returns twice (why?)
Everything is duplicated in the child process

File descriptor table (increasing reference counts on open file table entries)
Mapped memory regions (the address space)
Regions like stack, heap, etc. are copied

pid_t fork();

Illustration courtesy of Roz Cyrus.
44

Process Clones
The parent process’ file descriptor table is cloned on fork and the reference counts
within the relevant open file table entries are incremented. This explains how the child
can still output to the same terminal!

Illustration courtesy of Roz Cyrus.
45

fork()

Process B

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

1
2
3
4
5
6
7

Process A

int main(int argc, char *argv[]) {
 int x = 2;
 printf("Hello, world!\n");
 fork();
 printf("Goodbye, %d!\n", x);
 return 0;
}

1
2
3
4
5
6
7

(Am I the parent or the child?)

Is there a way for the processes to tell which is the parent and which is the child?

Key Idea: the return value of fork() is different in the parent and the child.

46

fork()
fork() creates a second process that is a clone of the first:
pid_t fork();

parent (original) process forks off a child (new) process
In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

47

$./myprogram

fork()

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 pid_t pidOrZero = fork();
 printf("fork returned %d\n", pidOrZero);
 return 0;
}

1
2
3
4
5
6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

48

$./myprogram2
Hello, world!

fork()

 printf("Hello, world!\n");
int main(int argc, char *argv[]) {1

2
 pid_t pidOrZero = fork();3
 printf("fork returned %d\n", pidOrZero);4
 return 0;5
}6

 pid_t pidOrZero = fork();

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("fork returned %d\n", pidOrZero);4
 return 0;5
}6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

49

$./myprogram2
Hello, world!

fork()

 pid_t pidOrZero = fork(); // 111

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("fork returned %d\n", pidOrZero);4
 return 0;5
}6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

 pid_t pidOrZero = fork(); // 0

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2

3
 printf("fork returned %d\n", pidOrZero);4
 return 0;5
}6

Process 111

50

$./myprogram
Hello, world!
fork returned 111
fork returned 0

fork()

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 1113

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 1113
 printf("fork returned %d\n", pidOrZero);4

5
}6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 03

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 03
 printf("fork returned %d\n", pidOrZero);4

5
}6

Process 111

51

$./myprogram
Hello, world!
fork returned 111
fork returned 0

fork()

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 1113

4
 return 0;5
}6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 03

4
 return 0;5
}6

Process 111

$./myprogram
Hello, world!
fork returned 0
fork returned 111

OR

52

$./myprogram
Hello, world!
fork returned 111
fork returned 0

fork()

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 1113

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 1113
 printf("fork returned %d\n", pidOrZero);4

5
}6

Process 110

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)

 printf("fork returned %d\n", pidOrZero);

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 03

4
 return 0;5
}6
 return 0;

int main(int argc, char *argv[]) {1
 printf("Hello, world!\n");2
 pid_t pidOrZero = fork(); // 03
 printf("fork returned %d\n", pidOrZero);4

5
}6

Process 111

$./myprogram
Hello, world!
fork returned 0
fork returned 111

OR

We can no longer assume the order in
which our program will execute! The OS
decides the order.

53

fork()
In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return 0 (this is not the child's PID, it's just 0)
A process can use getppid() to get the PID of its parent
if fork() returns < 0, that means an error occurred

// basic-fork.c
int main(int argc, char *argv[]) {
 printf("Greetings from process %d! (parent %d)\n", getpid(), getppid());
 pid_t pidOrZero = fork();
 assert(pidOrZero >= 0);
 printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
 return 0;
}

1
2
3
4
5
6
7
8

$./basic-fork
Greetings from process 29686! (parent 29351)
Bye-bye from process 29686! (parent 29351)
Bye-bye from process 29687! (parent 29686)

$./basic-fork
Greetings from process 29688! (parent 29351)
Bye-bye from process 29689! (parent 29688
Bye-bye from process 29688! (parent 29351)

The parent of the original process is the shell - the
program that you run in the terminal.
The ordering of the parent and child output is
nondeterministic. Sometimes the parent prints
first, and sometimes the child prints first! 54

Recap
Recap: File descriptors, open(), close(), read() and write()

Operating system data structures
How are system calls made?
Introduction to multiprocessing

Next time: more multiprocessing

55

