CS110 Lecture 6: Multiprocessing

CS110: Principles of Computer Systems main orintf fork orintf return
. o = @ e = & = FARENT
Winter 2021-2022 “Grestings rebye
Stanford University printf return
= fr CHILD

Instructors: Nick Troccoli and Jerry Cain "Bye-bye..
lllustration courtesy of Roz Cyrus.

PDF of this presentation

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-6.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

Learning About Processes

, 4 N .

Creating

processes and Inter-process :
. C L Signals

running other communication

programs 9 y 9

This/next Lecture Lecture Lecture
lecture 8/9 10/11 11

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell!

Learning Goals

e Learn how to use the fork() function to create a new process
e Understand how a process is cloned and run by the OS
e Understand how to use waitpid() to coordinate between processes

Lecture Plan

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/1002824

https://edstem.org/us/courses/16701/discussion/1002824

Lecture Plan

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/1002824

https://edstem.org/us/courses/16701/discussion/1002824

Multiprocessing Terminology

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

Process 5621

printf ("Goodbye!\n");

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core
(how?)

e "simultaneously" = switch between them so fast humans don't notice

e Your program thinks it's the only thing running

e OS schedules processes - who gets to run when

e Each process gets a little time, then has to wait

e Many times, waiting is good! E.g. waiting for key press, waiting for disk
e Caveat: multicore computers can truly multitask

Playing With Processes

When you run a program from the terminal, it runs in a new process.

e The OS gives each process a unique "process |ID" number (PID)
e PIDs are useful once we start managing multiple processes
e getpid() returns the PID of the current process

$./getpid
My process ID is 18814

$./getpid
main (argc, *argv[]) { My process ID is 18831
myPid = getpid();
printf("My process ID is %d\n", myPid);
0;

1
2
3
4
5
6
7
8
9

Lecture Plan

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/1002824

10

https://edstem.org/us/courses/16701/discussion/1002824

fork ()
fork() creates a second process that is a clone of the first:

Process A

main (argc, *argv[]) {
printf("Hello, world!\n");
fork();
printf ("Goodbye!\n");

0;

$./myprogram

11

fork ()
fork() creates a second process that is a clone of the first:

Process A

$./myprogram
Hello, world!

12

fork ()
fork() creates a second process that is a clone of the first:

Process A Process B

3 fork(); 3 fork();

$./myprogram
Hello, world!

fork ()
fork() creates a second process that is a clone of the first:

Process A Process B

$./myprogram
Hello, world!
Goodbye!
Goodbye!

14

fork ()
fork() creates a second process that is a clone of the first:

Process A

main (argc, *argv[]) {
X = 2;
printf ("Hello, world!\n");
fork();
printf ("Goodbye, %d!\n", x);
0;

$./myprogram2

fork ()
fork() creates a second process that is a clone of the first:

Process A

$./myprogram2
Hello, world!

16

fork ()
fork() creates a second process that is a clone of the first:

Process A Process B

4 fork(); 4 fork();

$./myprogram2
Hello, world!

fork ()
fork() creates a second process that is a clone of the first:

Process A Process B

$./myprogram2
Hello, world!
Goodbye, 2!
Goodbye, 2!

18

fork ()
fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
The child starts execution on the next program instruction. The parent continues execution with the

next program instruction. The order from now on is up to the OS!
fork() is called once, but returns twice (why?)
Everything is duplicated in the child process (except PIDs are different)
» File descriptor table (increasing reference counts on open file table entries)

» Mapped memory regions (the address space)
= Regions like stack, heap, etc. are copied

main printf fork printf return
r - & - = -8 PARENT
LU g 1 - --H.:I.._._: -:_ "
printf return
o] CHILD

“Bye-bye..." lllustration courtesy of Roz Cyrus. ‘9

Process Clones

The parent process’ file descriptor table is cloned on fork and the reference counts within
the relevant open file table entries are incremented. This explains how the child can still
output to the same terminal!

5 Procoss s 1D 28740 (parent) Process D 28741 [child)
o —: Other process control block Other process control block
o infor matn infarmation
]
F
E Des pt r Table Descriptor Table
E 1 2 3 4 &5
: I'ikL-\I\IIII plol T 1 1]
& /L- ple
"
5 i mode mode mode | w
I—Ilu I'E_ Cursor CUrsor cursor | 0
o o
E = ref. count | 2 ref. count | 2 ref. count | 2
E_ i
o 2 de ptr. qx\:-nude ptr. /i v-node pt:_.i__,.,!
o o Type terminal
m
: 1 raf. count a
'g = func. ptrs.
Z 7
=

lllustration courtesy of Roz Cyrus.

20

fO r k () @ the parent or the c@

O
0O

Process A

main (argc, *argv[]) {
X = 2;
printf ("Hello, world!\n");

fork();
printf ("Goodbye, %d!\n", x);
0;

Process B

main (argc, *argv[]) {
X = 2;

printf ("Hello, world!\n");

fork();

printf ("Goodbye, %d!\n", x);
0;

Is there a way for the processes to tell which is the parent and which is the child?

Key Idea: the return value of fork() is different in the parent and the child.

21

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
» |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
= |n the child, fork() will return O (this is not the child's PID, it's just O)

22

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

main (argc, *argv[]) {
printf("Hello, world!\n");
pidOrZero = fork();
printf ("fork returned %d\n", pidOrZero);
0;

$./myprogram

23

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

pidOrZero = fork();

$./myprogram2
Hello, world!

24

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

pidOrZero = fork(); pidOrZero = fork();

$./myprogram2
Hello, world!

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

$./myprogram
Hello, world!
fork returned 111
fork returned 0

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

printf ("fork returned %d\n", pidOrZero); printf ("fork returned %d\n", pidOrZero);

S ./myprogram S ./myprogram
Hello, world! Hello, world!
fork returned 111 fork returned O
fork returned O fork returned 111

fork ()

» |n the parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

We can no longer assume the order in

which our program will execute! The OS
decides the order.

$./myprogram C o me -

Hello, world! Hello, world!
fork returned 111 gﬂg fork returned O
fork returned O fork returned 111

fork ()

$

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return O (this is not the child's PID, it's just O)

A process can use getppid() to get the PID of its parent

if fork() returns < O, that means an error occurred

basic-fork.c

main (argc, *argv[]) {
printf ("Greetings from process %d! (parent %d)\n", getpid(), getppid());
pidOrZero = fork();

assert (pidOrZero >= 0);
printf("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
0;

- /basic-fork o The parent of the original process is the shell - the

Greetings from process 29686! (parent 29351)

Bye-bye from process 29686! (parent 29351) . .
Bye-bye from process 29687! (parent 29686) program that YOU runin the term|na|.

$

Greetings from process 29688! (parent 29351) TalIN7] I i
g o e reaes (o socas nondeterministic. Sometimes the parent prints

Bye-bye from process 29688! (parent 29351) first, and sometimes the child prints first!

e The ordering of the parent and child output is

./basic-fork

29

https://web.stanford.edu/class/cs110/examples/processes/lect6/basic-fork.c

Process Clones

What happens to variables and addresses?

main (argc, *argv[]) {
str[128];

strcpy(str, "Hello");

printf("str's address is %p\n", str);

pid = fork();
(pid == 0) {

printf("I am the child. str's address is %p\n", str);
strcpy(str, "Howdy");

printf("I am the child and I changed str to %s. str's address is still %p\n", str, str);

{

printf("I am the parent. str's address is %p\n", str);

printf ("I am the parent, and I'm going to sleep for 2 seconds.\n");
sleep(2);

printf ("I am the parent. I just woke up. str's address is %p, and its value is %s\n", str, str);

0;

https://web.stanford.edu/class/cs110/examples/processes/lect6/fork-copy.c

Process Clones

$./fork-copy
str's address is 0x7ffc8c£fa9990
I am the parent. str's address is 0x7ffc8c£fa9990
am the parent, and I'm going to sleep for 2 seconds.

am the child. str's address is 0x7ffc8cfa9990
am the child and I changed str to Howdy. str's address is still 0x7ffc8cfa9990
am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its value is Hello

How can the parent and child use the same address to store different data?

e Each program thinks it is given all memory addresses to use
e The operating system maps these virtual addresses to physical addresses

e When a process forks, its virtual address space stays the same
e The operating system will map the child's virtual addresses to different
physical addresses than for the parent

31

Process Clones

$./fork-copy
str's address is 0x7ffc8cfa9990

I am
am

am
am
am

the
the
the
the
the

parent. str's address is 0x7f£fc8c£fa9990

parent, and I'm going to sleep for 2 seconds.

child. str's address is 0x7ffc8cfa9990

child and I changed str to Howdy. str's address is still 0x7£f£fc8c£fa9990

parent. I just woke up. str's address is 0x7f£fc8cfa9990, and its value is Hello

Isn't it expensive to make copies of all memory when forking?

e The operating system only lazily makes copies.

e |t will have them share physical addresses until one of them changes its
memory contents to be different than the other.

e Thisis called copy on write (only make copies when they are written to).

32

Example: Loaded Dice

main (argc, *argv[]) {

srandom (time ()) i

printf ("This program will make you question what 'randomness' means...\n");
pidOrZero = fork();

o~V idWINE

(pidOrZero != 0) {
diceRoll = (random() % 6) + 1;
printf ("I am the parent and I rolled a %d\n", diceRoll);
sleep(l);
{
sleep(l);
diceRoll = (random() % 6) + 1;
printf("I am the child and I'm guessing the parent rolled a %d\n", diceRoll);

Key Idea: all state is copied from the parent to the child, even the random number
generator seed! Both the parent and child will get the same return value from

38‘{{)— so-random.cC

https://web.stanford.edu/class/cs110/examples/processes/lect6/not-so-random.c

Debugging Multiprocess Programs

How do | debug two processes at once? gdb has built-in support for debugging multiple processes

e set detach-on-fork off

= This tells gdb to capture any fork'd processes, though it pauses them upon the fork.
e info inferiors

= This lists the processes that gdb has captured.
e inferior X

= Switch to a different process to debug it.

detach inferior X

= Tell gdb to stop watching the process, and continue it

You can see an entire debugging session on the basic-fork program right here.

34

https://web.stanford.edu/class/cs110/examples/processes/lect6/basic-fork_gdb.txt

Lecture Plan

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/1002824

35

https://edstem.org/us/courses/16701/discussion/1002824

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

assert (pidOrZero >= 0);

fork-puzzle.c

36

https://web.stanford.edu/class/cs110/examples/processes/lect6/fork-puzzle.c

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

37

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidorZero = fork(); pidorZero = fork();

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

4

39

./fork-puzzle

Fork Tree

$
a
b
c
b
c
c
c

*kTrail = "abc";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

./ fork-puzzle

./fork-puzzle

1
2
3
4
5
6
7
8
9

$
a
b
c
b
c
c
$

=
o

0;

=
-
-

What happened here?
Observations:

e One ais printed by the original process.
e Theoriginal process and its child each print b.
e The two bs may not be consecutive - why?

40

Fork Tree

*kTrail = "abc";

main (argc, *argv([]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);

pidOrZero = fork();
assert (pidOrZero >= 0);

0;

el
H O VWO NOAU B WNR
-

Questions:

e 1aisprinted.
e 2 bs are printed.
e How many cs get printed? ->4: parent, child 1, child 2, Gchild 1

* Who prints nothing? -> Child 3, GGchild 1, Gehild 3, Gehild 2

41

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

= When your kernel boots, it starts the system.d program, which forks off all of the services and
systems for your computer

o Let's take a look with pstree

= Your window manager spawns processes when you start programs
= Network servers spawn processes when they receive connections

o E.g.,when you ssh into myth, sshd spawns a process to run your shell in (after setting up file
descriptors for your terminals over ssh)

e Processes are the first step in understanding concurrency, another key principle in computer
systems; we'll look at other forms of concurrency later in the quarter

42

Review So Far

e A processis aninstance of a program running

e Each process has a unique PID

e fork() creates a clone of the current process, and they run concurrently

e The parent and child are identical except for fork's return value (child PID for parent, O for
child)

e This concurrency lets your program multitask: much of the quarter will look at the
complications

= Nondeterministic ordering of execution across processes
m A parent can wait for its children to terminate

43

Lecture Plan

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Today's Ed Thread: https://edstem.org/us/courses/16701/discussion/1002824

44

https://edstem.org/us/courses/16701/discussion/1002824

It would be nice if there was a
function we could call that would
"stall” our program until the child is

finished.

waliltpid()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

pid: the PID of the child to wait on (we'll see other options later)

status: where to put info about the child's termination (or NULL)

options: optional flags to customize behavior (always O for now)

the function returns when the specified child process exits

the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait on)
If the child process has already exited, this returns immediately - otherwise, it blocks

46

waliltpid()

main (argc, *argv[]) {
printf ("Before.\n");
pidOrZero = fork();

(pidOrZero == 0) {
sleep(2);

O~NOUILIdWIN

{
result = waitpid(pidOrZero, , 0);
printf ("I (the parent) finished waiting for the child.

0;

$./waitpid
Before.

printf ("I (the child) slept and the parent still waited up for me.\n");

This always prints last.\n");

I (the child) slept and the parent still waited up for me.
I (the parent) finished waiting for the child. This always prints last.

$

waitpid.c

47

https://web.stanford.edu/class/cs110/examples/processes/lect6/waitpid.c

waliltpid()

Pass in the address of an integer as the second parameter to get the child's status.

main (argc, *argv([]) {

pid = fork(); e We can use WIFEXITED and

(pid == 0) {

printf("I'm the child, and the parent will wait up for me.\n"); WEXITSTATUS (among

P others) to extract info from

status; .
result = waitpid(pid, &status, 0); the status. (full program, with
(WIFEXITED(status)) { error checking, is right here)
printf("Child exited with status %d.\n", WEXITSTATUS(status)); .

R ,) e The output will be the same
printf("Child terminated abnormally.\n"); . .

every time! The parent will

always wait for the child to

finish before continuing.

o~ WDNRE

0;

$./separate
I am the child, and the parent will wait up for me.
Child exited with status 110.

$

waitpid-status.c

48

http://cs110.stanford.edu/lecture-examples/processes/separate.c
https://web.stanford.edu/class/cs110/examples/processes/lect6/waitpid-status.c

Lecture Recap

e Multiprocessing overview

e |Introducing fork()

e Practice: Fork Tree

e waitpid() and waiting for child processes

Next time: more waitpid(), execvp() and writing our first shell program

49

Extra Practice Problems

Practice: fork()

00O NNOYU1L b WDN =

main (argc, *argv([]) {
printf("Starting the program\n");
pidOrZerol fork();

pidOrZero2 = fork();

(pidOrZerol != 0 && pidOrZero2 != 0) {
printf("Hello\n");

(pidOrZero2 != 0) {
printf("Hi there\n");

0;

How many processes run in total?
a)l b2 ¢3 d4

How many times is "Hello" printed?
a)l b2 ¢3 d4

How many times is "Hi there" printed?
a)l b)2 ¢)3 d)4

51

Practice: fork()

main (argc, *argv([]) {

printf("Starting the program\n");
pidOrZerol = fork();
pidOrZero2 = fork();

(pidOrZerol != 0 && pidOrZero2 != 0) {
printf("Hello\n");

(pidOrZero2 != 0) {
printf("Hi there\n");

0;

Fork Tree Round 2

*kTrail = "abcd";

main (argc, *argv([]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);

pidOrZero = fork();
assert (pidOrZero >= 0);

0;

==
= O WO NNOoONULbWDN K
-

Questions:

e How many total processes are there when
running this program?
e How many times is d printed?
e Could ad be printed before an: "a"? "b"? "c"?
fork-puzzle-full.c e How many processes don't print anything?

http://web.stanford.edu/class/cs110/examples/processes/lect6/fork-puzzle-full.c

Fork Tree Round 2 From earlier fork tree:

*kTrail = "abcd";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

0;

1
2
3
4
5
6
7
8
9
10
11 }

Questions:

* How many total processes are there when running this program? e 16 total processes

e How many times is d printed? e disprinted 8 times

e Could ad be printed before an: "a"? "b"? "c"? e beforea"b" or"c"

e How many processes don't print anything? e 8 processes print nothing _,

