
CS110 Lecture 8: Pipes and Interprocess
Communication, Part 1
CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

Illustration courtesy of Roz Cyrus.

1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-8.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

and Pipes
Signals Race Conditions

Lecture 6/7 This/next
lecture

Lecture
10/11

Lecture
11

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell! 3

Learning Goals
Get more practice with using fork() and execvp

Learn about pipe and dup2 to create and manipulate file descriptors

Use pipes to redirect process input and output

4

Lecture Plan
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

5

Lecture Plan
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

6

fork()
A system call that creates a new child process
The "parent" is the process that creates the other "child" process

From then on, both processes are running the code after the fork

The child process is identical to the parent, except:

it has a new Process ID (PID)

for the parent, fork() returns the PID of the child; for the child, fork() returns 0

fork() is called once, but returns twice

pid_t pidOrZero = fork();
// both parent and child run code here onwards
printf("This is printed by two processes.\n");

1
2
3

7

waitpid()
A function that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

pid: the PID of the child to wait on, or -1 to wait on any of our children
status: where to put info about the child's termination (or NULL)
options: optional flags to customize behavior (always 0 for now)

The function returns when the specified child process exits.

the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait on)
If the child process has already exited, this returns immediately - otherwise, it blocks
It's important to wait on all children to clean up system resources

8

execvp is a function that lets us run another program in the current process.
int execvp(const char *path, char *argv[]);

execvp()

It runs the executable at the specified path, completely cannibalizing the current process.

If successful, execvp never returns in the calling process
If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

For our programs, path and argv[0] will be the same

execvp has many variants (execle, execlp, and so forth. Type man execvp for
more). We rely on execvp in CS110.

9

Revisiting mysystem
mysystem is our own version of the built-in function system.

It takes in a terminal command (e.g. "ls -l /usr/class/cs110"), executes it in a separate

process, and returns when that process is finished.

We can use fork to create the child process

We can use execvp in that child process to execute the terminal command

We can use waitpid in the parent process to wait for the child to terminate

10

Revisiting first-shell
int main(int argc, char *argv[]) {
 char command[kMaxLineLength];
 while (true) {
 printf("> ");
 fgets(command, sizeof(command), stdin);

 // If the user entered Ctl-d, stop
 if (feof(stdin)) {
 break;
 }

 // Remove the \n that fgets puts at the end
 command[strlen(command) - 1] = '\0';

 int commandReturnCode = mysystem(command);
 printf("return code = %d\n", commandReturnCode);
 }

 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Our first-shell program is a loop in main that

parses the user input and passes it to mysystem.first-shell-soln.c
11

http://web.stanford.edu/class/cs110/examples/processes/lect7/first-shell-soln.c

static int mysystem(char *command) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, wait for the child
 int status;
 waitpid(pidOrZero, &status, 0);
 return WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Revisiting first-shell

first-shell-soln.c
12

http://web.stanford.edu/class/cs110/examples/processes/lect7/first-shell-soln.c

first-shell Takeaways
A shell is a program that repeats: read command from the user, execute that command

In order to execute a program and continue running the shell afterwards, we fork off

another process and run the program in that process

We rely on fork, execvp, and waitpid to do this!

Real shells have more advanced functionality that we will add going forward.

For your fourth assignment, you'll build on this with your own shell, stsh ("Stanford

shell") with much of the functionality of real Unix shells.

13

Lecture Plan
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

14

Supporting Background Execution
Shells usually also let you run a command in the background by adding "&" at the end:

e.g. sort myfile.txt & - create a sort process and run it in the background

only difference is specifying & with command

shell immediately re-prompts the user

process doesn't know "foreground" vs. "background"; the "&" just specifies whether or

not the shell waits

first-shell-soln-bg.c
15

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Supporting Background Execution
Let's make an updated version of mysystem called executeCommand.

Takes an additional parameter bool inBackground

If false, same behavior as mysystem (spawn child, execvp, wait for child)

If true, spawn child, execvp, but don't wait for child

first-shell-soln-bg.c
16

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Supporting Background Execution
static void executeCommand(char *command, bool inBackground) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // If we are the child, execute the shell command
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, either wait or return immediately
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitpid(pidOrZero, NULL, 0);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

first-shell-soln-bg.c
17

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Supporting Background Execution
static void executeCommand(char *command, bool inBackground) {1
 pid_t pidOrZero = fork();2
 if (pidOrZero == 0) {3
 // If we are the child, execute the shell command4
 char *arguments[] = {"/bin/sh", "-c", command, NULL};5
 execvp(arguments[0], arguments);6
 // If the child gets here, there was an error7
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);8
 }9
 10
 // If we are the parent, either wait or return immediately11
 if (inBackground) {12
 printf("%d %s\n", pidOrZero, command);13
 } else {14
 waitpid(pidOrZero, NULL, 0);15
 }16
}17

Line 1: Now, the caller can optionally run the command in the background.

first-shell-soln-bg.c
18

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Supporting Background Execution

 // If we are the parent, either wait or return immediately
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitpid(pidOrZero, NULL, 0);
 }

static void executeCommand(char *command, bool inBackground) {1
 pid_t pidOrZero = fork();2
 if (pidOrZero == 0) {3
 // If we are the child, execute the shell command4
 char *arguments[] = {"/bin/sh", "-c", command, NULL};5
 execvp(arguments[0], arguments);6
 // If the child gets here, there was an error7
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);8
 }9
 10

11
12
13
14
15
16

}17

Lines 11-16: The parent waits on a foreground child, but not a background child.

first-shell-soln-bg.c
19

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Supporting Background Execution

 if (strcmp(command, "quit") == 0) break;

 bool isbg = command[strlen(command) - 1] == '&';
 if (isbg) {
 command[strlen(command) - 1] = '\0';
 }

 executeCommand(command, isbg);

int main(int argc, char *argv[]) {1
 char command[kMaxLineLength];2
 while (true) {3
 printf("> ");4
 fgets(command, sizeof(command), stdin);5
 6
 // If the user entered Ctl-d, stop7
 if (feof(stdin)) {8
 break;9
 }10
 11
 // Remove the \n that fgets puts at the end12
 command[strlen(command) - 1] = '\0';13
 14

15
16
17
18
19
20
21
22

 }23
 24
 printf("\n");25
 return 0;26
}27

In main, we add two additional things:

Check for the "quit" command to exit

Allow the user to add "&" at the end of a

command to run that command in the

background

Note that a background child isn't reaped!

This is a problem - one we'll learn how to fix

soon.

first-shell-soln-bg.c
20

http://web.stanford.edu/class/cs110/examples/processes/lect8/first-shell-soln-bg.c

Lecture Plan
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

21

Is there a way that the parent and
child processes can communicate?

22

Interprocess Communication
It's useful for a parent process to communicate with its child (and vice versa)

There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data

Signals let two processes send and receive certain "signals" that indicate

something special has happened.

23

Interprocess Communication
It's useful for a parent process to communicate with its child (and vice versa)

There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data

Signals let two processes send and receive certain "signals" that indicate

something special has happened.

24

Pipes
How can we let two processes send arbitrary data back and forth?

A core Unix principle is modeling things as files. Could we use a "file"?

Idea: a file that one process could write, and another process could read?

Problem: we don't want to clutter the filesystem with actual files every time two

processes want to communicate.

Solution: have the operating system set this up for us.

It will give us two new file descriptors - one for writing, another for reading.

If someone writes data to the write FD, it can be read from the read FD.

It's not actually a physical file on disk - we are just using files as an abstraction

25

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7

8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 read(fds[0], receivedMessage, sizeof(receivedMessage));

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11

12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[0]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12

13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

$./pipe-demo
Message read: Hello, this message is coming through a pipe.

1
2

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

26

http://web.stanford.edu/class/cs110/examples/processes/lect8/pipe-demo.c

Lecture Plan
Review: fork() and execvp()

Running in the background

Introducing Pipes

What are pipes?

Pipes between processes

27

pipe()
pipe can allow processes to communicate!

The parent's file descriptor table is

replicated in the child - both have pipe

access (increasing reference counts in open

file table)

E.g. the parent can write to the "write" end

and the child can read from the "read" end

Because they're file descriptors, there's no

global name for the pipe (another process

can't "connect" to the pipe).

Each pipe is uni-directional (one end is read,

the other write)

Illustration courtesy of Roz Cyrus. 28

Let's write a program where the parent
writes something to the pipe, and the

child reads that from the pipe.

29

Illustration courtesy of Roz Cyrus. 30

Key Idea: because the pipe file
descriptors are duplicated in the child,

we need to close the 2 pipe ends in both
the parent and the child.

31

Here's an example program
showing how pipe works
across processes (full
program link at bottom).

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

parent-child-pipe.c

Parent-Child Communication

32

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

Make a pipe just like before.
 int fds[2];
 pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
4

 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

parent-child-pipe.c

Parent-Child Communication

33

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

The parent must close all its
open FDs. It never uses the
Read FD so we can close it
here.

 close(fds[0]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18

19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

parent-child-pipe.c

Parent-Child Communication

34

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

Write to the Write FD to
send a message to the child.

 write(fds[1], kPipeMessage, bytesSent);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19

20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

parent-child-pipe.c

Parent-Child Communication

35

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

We are now done with the
Write FD so we can close it
here.

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20

21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

parent-child-pipe.c

Parent-Child Communication

36

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

We wait for the child to
terminate.

 waitpid(pidOrZero, NULL, 0);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21

22
 return 0;23
}24

parent-child-pipe.c

Parent-Child Communication

37

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 pid_t pidOrZero = fork();

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6

7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Key Idea: when we call fork,
the child gets a copy of the
parent's file descriptor
table. Any open FDs in the
parent at the time fork is
called must be closed in both
the parent and the child.

parent-child-pipe.c

Parent-Child Communication

This duplication means the
child's file descriptor table
entries point to the same open
file table entries as the parent.
 Thus, the open file table
entries for the two pipe FDs
both have reference counts of
2. 38

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9

10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

The child must close all its
open FDs. It never uses the
Write FD so we can close it
here.

parent-child-pipe.c

Parent-Child Communication

39

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10

11
12

 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Read from the Read FD to
read the message from the
parent.

parent-child-pipe.c

Parent-Child Communication

Key Idea: read() blocks until
the bytes are available or
there is no more to read
(e.g. end of file or pipe write
end closed). If the parent
hasn't written yet, the
child's call to read() will
wait.

40

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 close(fds[0]);
 printf("Message from parent: %s\n", buffer);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12

13
14

 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

We are now done with the
Read FD so we can close it
here. Also print the
received message.

parent-child-pipe.c

Parent-Child Communication

41

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 pid_t pidOrZero = fork();

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6

7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent and
the child.

Here, right before the
fork call, the parent has 2
open file descriptors
(besides 0-2): the pipe Read
FD and Write FD.

parent-child-pipe.c

Parent-Child Communication

42

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 pid_t pidOrZero = fork();

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6

7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent and
the child.

Therefore, when the child is
spawned, it also has the
same 2 open file descriptors
(besides 0-2): the pipe Read
FD and Write FD.

parent-child-pipe.c

Parent-Child Communication

43

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 close(fds[0]);

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9
 close(fds[1]);10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12
 close(fds[0]);13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18

19
 write(fds[1], kPipeMessage, bytesSent);20

21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent and
the child.

We should close FDs when
we are done with them. The
parent closes them here.

parent-child-pipe.c

Parent-Child Communication

44

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

 close(fds[1]);

 close(fds[0]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 pipe(fds);4
 size_t bytesSent = strlen(kPipeMessage) + 1;5
 6
 pid_t pidOrZero = fork();7
 if (pidOrZero == 0) {8
 // In the child, we only read from the pipe9

10
 char buffer[bytesSent];11
 read(fds[0], buffer, sizeof(buffer));12

13
 printf("Message from parent: %s\n", buffer);14
 return 0;15
 }16
 17
 // In the parent, we only write to the pipe (assume everything is written)18
 close(fds[0]);19
 write(fds[1], kPipeMessage, bytesSent);20
 close(fds[1]);21
 waitpid(pidOrZero, NULL, 0);22
 return 0;23
}24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent and
the child.

We should close FDs when
we are done with them. The
child closes them here.

parent-child-pipe.c

Parent-Child Communication

45

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

Illustrations courtesy of Roz Cyrus.

continued...

46

Illustrations courtesy of Roz Cyrus.

continued...

47

Illustrations courtesy of Roz Cyrus.

continued...

48

https://cplayground.com/?p=eagle-fish-mouse

DEMO: Parent-Child Communication

49

https://cplayground.com/?p=eagle-fish-mouse

This method of communication between processes relies on the fact that file descriptors are
duplicated when forking.

each process has its own copy of both file descriptors for the pipe
both processes could read or write to the pipe if they wanted.
each process must therefore close both file descriptors for the pipe when finished

This is the core idea behind how a shell can support piping between processes
(e.g. cat file.txt | uniq | sort). Let's see how this works in a shell.

Pipes

50

Lecture Recap
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

Next time: more practice with pipes

51

