
CS110 Lecture 9: Pipes and Interprocess
Communication, Part 2
CS110: Principles of Computer Systems

Winter 2021-2022

Stanford University

Instructors: Nick Troccoli and Jerry Cain

PDF of this presentation

Illustration courtesy of Roz Cyrus.

1

https://web.stanford.edu/class/cs110/lectures/cs110-win2122-lecture-9.pdf

CS110 Topic 2: How can our program
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

and Pipes
Signals Race Conditions

Lecture 6/7 This
lecture

Lecture
10/11

Lecture
11

assign3: implement multiprocessing programs like "trace" (to trace another
program's behavior) and "farm" (parallelize tasks)

assign4: implement your own shell! 3

Learning Goals
Get more practice creating and using pipes

Learn about dup2 to create and manipulate file descriptors

Use pipes to redirect process input and output

4

Lecture Plan
Review: pipes

Redirecting process I/O

Practice: Implementing subprocess

Practice: Implementing pipeline

5

Lecture Plan
Review: pipes

Redirecting process I/O

Practice: Implementing subprocess

Practice: Implementing pipeline

6

Pipes
A pipe is a set of two file descriptors representing a "virtual file" that can be written to

and read from

It's not actually a physical file on disk - we are just using files as an abstraction

Any data you write to the write FD can be read from the read FD

Because file descriptors are duplicated on fork(), we can create pipes that are shared

across processes!

7

Illustration courtesy of Roz Cyrus. 8

Key Idea: because the pipe file
descriptors are duplicated in the child,

we need to close the 2 pipe ends in both
the parent and the child.

9

Here's an example program
showing how pipe works
across processes (full
program link at bottom).

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

parent-child-pipe.c

Parent-Child Communication

10

http://web.stanford.edu/class/cs110/examples/processes/lect8/parent-child-pipe.c

Illustrations courtesy of Roz Cyrus.

continued...

11

Illustrations courtesy of Roz Cyrus.

continued...

12

Illustrations courtesy of Roz Cyrus.

continued...

13

Illustrations courtesy of Roz Cyrus.

continued...

14

Illustrations courtesy of Roz Cyrus.

continued...

15

Illustrations courtesy of Roz Cyrus.

continued...

16

Illustrations courtesy of Roz Cyrus.

continued...

17

This method of communication between processes relies on the fact that file descriptors are
duplicated when forking.

each process has its own copy of both file descriptors for the pipe
both processes could read or write to the pipe if they wanted.
each process must therefore close both file descriptors for the pipe when finished

This is the core idea behind how a shell can support piping between processes
(e.g. cat file.txt | uniq | sort).

Pipes

18

Lecture Plan
Review: pipes

Redirecting process I/O

Practice: Implementing subprocess

Practice: Implementing pipeline

19

Redirecting Process I/O
Each process has the special file descriptors STDIN (0), STDOUT (1) and STDERR (2)

Processes assume these indexes are for these methods of communication (e.g. printf

always outputs to file descriptor 1, STDOUT).

Idea: what happens if we change FD 1 to point somewhere else?

0 1 2 3

Terminal File

20

Redirecting Process I/O

0 1 2

Terminal

int main() {
 printf("This will print to the terminal\n");
 close(STDOUT_FILENO);

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This will print to myfile.txt!\n");
 close(fd);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

Idea: what happens if we change FD 1 to point somewhere else?

21

Redirecting Process I/O

0 1 2

Terminal

 close(STDOUT_FILENO);

int main() {1
 printf("This will print to the terminal\n");2

3
 4
 // fd will always be 15
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);6
 7
 printf("This will print to myfile.txt!\n");8
 close(fd);9
 return 0;10
}11

Idea: what happens if we change FD 1 to point somewhere else?

22

Redirecting Process I/O

0 1 2

Terminal myfile.txt

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

int main() {1
 printf("This will print to the terminal\n");2
 close(STDOUT_FILENO);3
 4

5
6

 7
 printf("This will print to myfile.txt!\n");8
 close(fd);9
 return 0;10
}11

Idea: what happens if we change FD 1 to point somewhere else?

23

Redirecting Process I/O

0 1 2

Terminal myfile.txt

 printf("This will print to myfile.txt!\n");

int main() {1
 printf("This will print to the terminal\n");2
 close(STDOUT_FILENO);3
 4
 // fd will always be 15
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);6
 7

8
 close(fd);9
 return 0;10
}11

Idea: what happens if we change FD 1 to point somewhere else?

24

Redirecting Process I/O

0 1 2

Terminal

Idea: what happens if we change a special FD to point somewhere else?

Could we do this with a pipe?

0 1 2

pipe
READ

Process 1 Process 2

pipe
WRITE

25

Why would this be useful?

Redirecting Process I/O
I/O redirection and pipes allow us to handle piping in our shell: e.g. cat file.txt | sort

0 1 2

Terminal

0 1 2

pipe
READ

cat sort

pipe
WRITE

26

This allows the shell to link together two distinct executables without them knowing.

(How?)

Redirecting Process I/O
Stepping stone: our first goal is to write a program that spawns another program and sends data to
its STDIN.

Terminal

0 1 2

pipe
READ

Our program sort

pipe
WRITE

0 1 2 ...4

27

The sort executable has no idea its input is not coming from terminal entry!

Redirecting Process I/O
Our first goal is to write a program that spawns another program and sends data to its STDIN.

1. Our program creates a pipe
2. Our program spawns a child process
3. That child process changes its STDIN to be the pipe read end (how?)
4. That child process calls execvp to run the specified command
5. The parent writes to the write end of the pipe, which appears to the child as its STDIN

"Wait a minute...I thought execvp consumed the process? How do the file descriptors stick
around?"
New insight: execvp consumes the process, but leaves the file descriptor table in tact!

28

One issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

Redirecting Process I/O

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index. If

the second parameter is an already-open file descriptor, it is closed before being used.

int dup2(int oldfd, int newfd);

Example: we can use dup2 to copy the pipe read file descriptor into standard input!

dup2(fds[0], STDIN_FILENO);

29

Redirecting Process I/O
dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index. If

the second parameter is an already-open file descriptor, it is closed before being used.
int dup2(int oldfd, int newfd);

Illustrations courtesy of Roz Cyrus. 30

Lecture Plan
Review: our first shell

Running in the background

Introducing Pipes

 What are pipes?

Pipes between processes

 Redirecting process I/O

Practice: Implementing subprocess

31

subprocess
To practice this piping technique, let's implement a custom function called subprocess.

 subprocess_t subprocess(char *command);

subprocess is the same as mysystem, except it also sets up a pipe we can use to write to

the child process's STDIN.

It returns a struct containing:

the PID of the child process

a file descriptor we can use to write to the child's STDIN

32

Demo: subprocess

subprocess-soln.c
33

http://web.stanford.edu/class/cs110/examples/processes/lect9/subprocess-soln.c

Lecture Plan
Review: pipes

Redirecting process I/O

Practice: Implementing subprocess

Practice: Implementing pipeline

34

Pipeline
I/O redirection and pipes allow us to handle piping in our shell: e.g. cat file.txt | sort

0 1 2

Terminal

0 1 2

pipe
READ

cat sort

pipe
WRITE

35

Final task: write a program that spawns two child processes and connects the first child's

STDOUT to the second child's STDIN.

Redirecting Process I/O
Our final goal is to write a program that spawns two other processes where one's output is the
other's input. Both processes should run in parallel.

1. Our program creates a pipe
2. Our program spawns a child process
3. That child process changes its STDIN to be the pipe read end
4. That child process calls execvp to run the first specified command
5. Our program spawns another child process
6. That child process changes its STDOUT to be the pipe write end

36

pipeline
Let's implement a custom function called pipeline.

 void pipeline(char *argv1[], char *argv2[], pid_t pids[]);

pipeline is similar to subprocess, except it also spawns a second child and directs its

STDOUT to write to the pipe. Both children should run in parallel.

It doesn't return anything, but it writes the two children PIDs to the specified pids array

37

Demo: pipeline

pipeline-soln.c
38

http://web.stanford.edu/class/cs110/examples/processes/lect9/pipeline-soln.c

pipe2
There were a lot of close() calls! Is there a way for any of them to be done automatically?

int pipe2(int fds[], int flags);

pipe2 is the same as pipe except it lets you customize the pipe with some optional flags.

if flags is 0, it's the same as pipe

if flags is O_CLOEXEC, the pipe FDs will be automatically closed when the surrounding
process calls execvp.

39

pipeline

 close(fds[0]);

 close(fds[1]);

 close(fds[0]);

void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {1
 int fds[2];2
 pipe(fds);3
 4
 pids[0] = fork();5
 if (pids[0] == 0) {6

7
 dup2(fds[1], STDOUT_FILENO);8

9
 execvp(argv1[0], argv1);10
 }11
 12
 close(fds[1]);13
 14
 pids[1] = fork(); 15
 if (pids[1] == 0) {16
 dup2(fds[0], STDIN_FILENO);17

18
 execvp(argv2[0], argv2);19
 }20
 21
 close(fds[0]);22
}23

The highlighted calls to

close() would no longer be

necessary if we use pipe2 with

O_CLOEXEC because the

surrounding process for each

calls execvp.

Note that the parent must still

close them because it doesn't

call execvp.

40

pipeline with pipe2
void pipeline(char *argv1[], char *argv2[], pid_t pids[]) {
 int fds[2];
 pipe2(fds, O_CLOEXEC);

 pids[0] = fork();
 if (pids[0] == 0) {
 dup2(fds[1], STDOUT_FILENO);
 execvp(argv1[0], argv1);
 }

 close(fds[1]);

 pids[1] = fork();
 if (pids[1] == 0) {
 dup2(fds[0], STDIN_FILENO);
 execvp(argv2[0], argv2);
 }

 close(fds[0]);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

This version of pipeline uses

pipe2 with O_CLOEXEC.

41

Pipes and I/O Redirection: Key Takeaways
Pipes are sets of file descriptors that allow us to communicate across processes.
Processes can share these file descriptors because they are copied on fork()
File descriptors 0,1 and 2 are special and assumed to represent STDIN, STDOUT and
STDERR
If we change those file descriptors to point to other resources, we can redirect
STDIN/STDOUT/STDERR to be something else without the program knowing!
Pipes are how terminal support for piping and redirection (command1 | command2
and command1 > file.txt) are implemented!

42

Lecture Recap
Review: pipes

Redirecting process I/O

Practice: Implementing subprocess

Practice: Implementing pipeline

Next time: signals (another form of interprocess communication)

43

Practice Problems

44

The program below takes an arbitrary number of filenames as arguments and attempts to publish
the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

 if (fork() > 0) return;

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

}

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

int main(int argc, char *argv[]) {

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10

11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?

 What do each of the four files
contain?

How can we fix the issue?

45

http://web.stanford.edu/class/cs110/examples/processes/lect9/publish.c

Because the child processes (and only the child processes) should be redirecting, we should open,
dup2, and close in child-specific code. A happy side effect of the change is that we never muck with
STDOUT_FILENO in the parent if we confine the redirection code to the child. Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

 close(outfile);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9 }

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

A Publishing Error

publish.c
46

http://web.stanford.edu/class/cs110/examples/processes/lect9/publish.c

captureProcess
Let's implement a custom function called captureProcess, like subprocess except instead

of setting up a pipe to write to the child's STDIN, it's a pipe to read from its STDOUT.

subprocess_t captureProcess(char *command);

It returns a struct containing:

the PID of the child process

a file descriptor we can use to read from the child's STDOUT

47

captureProcess
Let's implement a custom function called captureProcess, like subprocess except instead

of setting up a pipe to write to the child's STDIN, it's a pipe to read from its STDOUT.
subprocess_t captureProcess(char *command) {
 int fds[2];
 pipe(fds);

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // We are not reading from the pipe, only writing to it
 close(fds[0]);

 // Duplicate the write end of the pipe into STDOUT
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);

 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 close(fds[1]);
 return (subprocess_t) { pidOrZero, fds[0] };
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

captureProcess.c
48

http://web.stanford.edu/class/cs110/examples/processes/lect9/captureProcess.c

