
Lab Handout 1 Solution: File Systems and
System Calls
The first and last exercises are problem set-esque questions that could easily appear on a
midterm or final exam. In fact, all of the questions asked under Problem 4 were on previous
midterms and finals. The middle two problems are experiments that'll require you fire up your
laptop and run some programs and development tools.

The lab checkoff sheet for all students—both on-campus and off—can be found right here.

This lab was designed by Jerry Cain.

Problem 1: Direct, Singly Indirect, and Doubly Indirect
Block Numbers
Assume blocks are 512 bytes in size, block numbers are four-byte ints, and that inodes include
space for 6 block numbers. The first three contain direct block numbers, the next two contain
singly indirect block numbers, and the final one contains a doubly indirect block number.

● What's the maximum file size?
○ Maximum file size is 3 * 512 + 2 * 128 * 512 + 128 * 128 * 512, or 8,521,216

bytes.
● How large does a file need to be before the relevant inode requires the first singly

indirect block number be used?
○ 3 * 512 + 1, or 1,537 bytes.

● How large does a file need to be before the relevant inode requires the first doubly
indirect block number be used?

○
● Draw as detailed an inode as you can if it's to represent a regular file that's 2049 bytes in

size.
○ Description:

■ The first three block numbers would identify three, saturated payload
blocks, and those three payload blocks would store the first 1,536 bytes.

■ The fourth block number—a singly, indirect one—would lead to a block of
512 bytes, although only the first eight bytes for be used. The first four
bytes would identify the fourth payload block—itself saturated—to store
512 bytes of payload. The next four bytes would identify a fifth payload
block where only the first byte is used.

Problem 2: Experimenting with the stat utility

https://web.stanford.edu/class/cs110/cgi-bin/lab1

This problem is more about exploration and experimentation, and not so much about generating
a correct answer. The file system reachable from each myth machine consists of the local file
system (restated, it's mounted on the physical machine) and networked drives that are grafted
onto the fringe of the local file system so that all of AFS—-which consists of many, many
independent file systems from around the globe—all contribute to one virtual file system
reachable from your local / directory.

Log into myth52 and use the stat command line utility (which is a user program that makes
calls to the stat system call as part of its execution) and prints out oodles of information about
a file. Type in the following commands and analyze the output:

● stat/
● stat/tmp
● stat/usr
● stat/usr/bin
● stat/usr/bin/g++
● stat/usr/bin/g++-5

The output for each of the five commands above all produce the same device ID but different
inode numbers. Read through this to gain insight on what the Device values are.

● Output for stat / includes a size of 4096, a block count of 8, and I/O block size of 4096,
an inode number of 2, and a nlinks value of 26. It's also clear it's a directory.

poohbear@myth52:/usr/class/cs110$ stat /
 File: '/'
 Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 801h/2049d Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2019-01-15 14:34:40.650771469 -0800

Modify: 2018-04-16 17:08:24.260965019 -0700

Change: 2018-04-16 17:08:24.260965019 -0700

Birth: -

poohbear@myth52:/usr/class/cs110$

● Directory sizes are always exposed as multiples of the true block size, which is 4096.
● The sector size is 512, and stat states that it uses 8 sectors to store all of its directory

entries. (I have no idea why stat uses blocks here instead of sectors; I just know it
does).

● The I/O block size just happens to be the same as the actual block size, but it's listed
separately, because it could have been different. The I/O block size is the optimal byte
transfer size supported by the file system hardware.

● The device information is expressed as a hexadecimal (801h) and a decimal equivalent
(2049d). The 801 states that the major device number is 8, and then the minor device

http://stackoverflow.com/questions/4309882/device-number-in-stat-command-output

number (or partition) within that major device is 1. If you do an ls -lt /dev/sda*, you
get a listing within the pseudo-file system like that below, where /dev/sda1 is pseudofile
representing the device driver that interfaces with the file system holding the root
directory. (Special files like this are set up so that software can programmatically interact
with device drivers as if they were files.)

poohbear@myth52:/usr/class/cs110$ ls -lt /dev/sda*
brw-rw---- 1 root disk 8, 5 Jan 13 09:15 /dev/sda5
brw-rw---- 1 root disk 8, 1 Jan 13 09:15 /dev/sda1

brw-rw---- 1 root disk 8, 2 Jan 13 09:15 /dev/sda2

brw-rw---- 1 root disk 8, 0 Jan 13 09:15 /dev/sda

poohbear@myth52:/usr/class/cs110$

● The inode number is 2. The inode with number 1 is /lost+found
● The number of links is 26, which means that there are 26 different names leading

to the root directory's payload: /. is one, and believe it or not, /.. is a second,
since .. is the same as . for the root directory. If you
ls -lt /, you see that there are 24 subdirectories, each of which has a ..
directory entry. That's the source of the 26.

● You can do similar listing for the other files as you get the same type of
information.

●
For each of the above commands, replace stat with stat-f to get information about the file
system on which the file resides (block size, inode table size, number of free blocks, number of
free inodes, etc).

● Output for stat -f / looks like this:

poohbear@myth52:/usr/class/cs110/WWW$ stat -f /
File: "/"
ID: 56c68aaafba5efed Namelen: 255 Type: ext2/ext3

Block size: 4096 Fundamental block size: 4096

Blocks: Total: 51833244 Free: 45817962 Available: 43179204

Inodes: Total: 13180928 Free: 12496473

poohbear@myth52:/usr/class/cs110$

● ext2 and ext3 are types of file systems, and the file systems on the myths are evidently
a hybrid of the two.

● namelen is the maximum length of a filename component supported by the filesystem.
● the fundamental block size is the block size we've discussed in lecture, and the block

size (without the fundamental prefix) is a hint as to the optimal transfer size for I/O
operations (and is generally the same as the I/O Block value discussed above).

Now log into myth55 and run the same commands. Why are the outputs of stat and stat-f
the same in some cases and different in others?

● Each of myth52 and myth55 have independent file systems and might be populated
slightly differently. However, the g++ and g++-5 executable images, while independent
copies of the same file, are exactly that—independent copies of the same file, so all of
g++'s and g++-5's file properties will be the same.

Now analyze the output of the stat utility when levied against AFS mounts where the master
copies of all /usr/class and /usr/class/cs110 files reside. Do this from both myth52 and
myth55.

● stat/usr/class
● stat-f/usr/class
● stat/afs/ir.stanford.edu/class
● stat-f/afs/ir.stanford.edu/class
● stat/usr/class/cs110
● stat/afs/ir.stanford.edu/class/cs110
● stat-f/usr/class/cs110

Why are most of the outputs the same for myth52 compared to myth55? Which ones are
symbolic links? Why are the device numbers for remotely hosted file systems so small?

● All but one of the outputs is the same, because they all refer to the same files on remote
file system that's been grafted in to contribute to the overall virtual file system that is AFS
(or Andrew File System). (The output for stat /usr/class is slightly different, because
that symbolic link resides on the myth52 filesystem).

● This is what I get when I stat /usr/class from myth56: (myth52 and myth55 are down
right now :))

poohbear@myth56:/usr/class/cs110$ stat /usr/class
 File: '/usr/class' -> '/afs/ir.stanford.edu/class'
 Size: 26 Blocks: 0 IO Block: 4096 symbolic link

Device: 801h/2049d Inode: 3063427 Links: 1

Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)

Access: 2019-01-17 13:54:08.301071882 -0800

Modify: 2017-11-30 19:16:59.467003373 -0800

Change: 2017-11-30 19:16:59.467003373 -0800

Birth: -

poohbear@myth56:/usr/class/cs110$

○ This is a symbolic link stored on myth56's resident file system (note the 801h
again). It's clearly identified as a symbolic link (represented via inode with
inumber 3063427). Its payload size is 26, which is the length of the
/afs/ir.stanford.edu/class the link expands to. The surprising part is that
the payload requires 0 blocks! But that's because symbolic link payloads are

stored not in external blocks, but in the the space set aside for the inode's block
numbers array. Sneaky!

● Interestingly, the output of stat/usr/class/ (note that extra slash at the end) is
different, because that extra slash dereferences the symbolic link!

poohbear@myth56:/usr/class/cs110$ stat /usr/class/
 File: '/usr/class/'
 Size: 309248 Blocks: 604 IO Block: 4096 directory

Device: 28h/40d Inode: 262274 Links: 5

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2019-01-14 18:11:41.000000000 -0800

Modify: 2019-01-14 18:11:41.000000001 -0800

Change: 2019-01-14 18:11:41.000000000 -0800

Birth:

poohbear@myth56:/usr/class/cs110$

● Why are the major device numbers so small here? AFS uses major number 0, hence the
smaller device number. AFS doesn't expose much about how remotely managed files
are stored, which is why they went with a 0.

What about these commands?

● stat/afs/northstar.dartmouth.edu
● stat-f/afs/northstar.dartmouth.edu
● stat/afs/asu.edu
● stat-f/afs/asu.edu

What files can you see within the dartmouth.eduand asu.edu mounts?

My most interesting finding with stat and stat -f on those two remote directories is that the
fundamental block sizes are 1024 instead of 2048. And I was able to see 20 directory entries
within /afs/northstar.dartmouth.edu and 47 directory entries within /afs/asu.edu.

Problem 3: valgrind and orphaned file descriptors
Here's a very short exercise to enhance your understanding of valgrind and what it can do for
you. To get started, type the following in to create a local copy of the repository you'll play with
for this problem:

poohbear@myth58:~$ git clone /usr/class/cs110/repos/lab1/shared lab1

poohbear@myth58:~$ cd lab1

poohbear@myth58:~$ make

Now open the file and trace through the code to keep tabs on what file descriptors are created,
properly closed, and orphaned. Then run valgrind ./nonsense to confirm that there aren't
any memory leaks or errors (how could there be?), but then run valgrind --track-fds=yes
./nonsense to get information about the file descriptors that were (intentionally) left open.

Without changing the logic of the program, insert as many close statements as necessary so
that all file descriptors (including 0, 1, and 2) are properly donated back. (In general, you do not
have to close file descriptors 0, 1, and 2.)

● This should be pretty self-explanatory, so I won't include anything here beyond a remark
that you need a close statement for every open descriptor identified by valgrind, and
you should be careful to never close a previously closed descriptor.

Problem 4: Short Answer Questions
Provide clear answers and/or illustrations for each of the short answer questions below. Each of
these questions is either drawn from old exams or based on old exam questions. Questions like
this will certainly appear on your own midterm.

1. The dup system call accepts a valid file descriptor, claims a new, previously unused file
descriptor, configures that new descriptor to alias the same file session as the incoming
one, and then returns it. Briefly outline what happens to the relevant file entry table and
vnode table entries as a result of dup being called. (Read man dup if you'd like, though
don't worry about error scenarios).

a. The vnode table entry is left alone, but a new file descriptor is claimed and set to
address the same entry in the file entry table session as the incoming one, and
the reference count within that session entry would be incremented by one.

2. Now consider the prototype for the link system call (peruse man link). A successful
call to link updates the file system so the file identified by oldpath is also identified by
newpath. Once link returns, it’s impossible to tell which name was created first. (To be
clear, newpath isn’t just a symbolic link, since it could eventually be the only name for
the file.) In the context of the file system discussed in lecture and/or the file system
discussed in Section 2.5 of the secondary textbook, explain how link might be
implemented.

a. Resolve oldpath to its inode number, append new directory entry to sequence of
existing directory entries where newpath resides. Fill in entry with last component
of newpath, and fill in inumber with the inumber of old path. Finally, increment the
reference count within the inode itself to be clear the file has one more name.

3. Explain what happens when you type cd.././../. at the shell prompt. Frame your
explanation in terms of the file system described in Section 2.5 of the secondary
textbook, and the fact that the inode number of the current working directory is the only
relevant global variable maintained by your shell.

a. Search cwd’s payload for .., set inumber of cwd to inumber associated with ..;
repeat three more times for ., then .., and then . :)

4. All modern file systems allow symbolic links to exist as shortcuts for longer absolute and
relative paths (e.g. search_soln might be a symbolic link for
/usr/class/cs110/samples/assign1/search_soln, and tests.txt might be a
symbolic link for ./mytests/tests.txt. Explain how the absolute pathname resolution
process we discussed in lecture would need to change to resolve absolute pathnames to
inode numbers when some of the pathname components might be symbolic links.

a. The absolute pathname resolution process (implemented as pathname_lookup
in assign2) should piecemeal tokenize pathnames as usual. When component
(e.g. tests.txt) is identified as symlink, prepend expansion to unprocessed
set of tokens, continue for relative paths from inumber of symlink parent, restart
from inode 1 for absolute paths.

5. Recall that the stack frames for system calls are laid out in a different segment of
memory than the stack frames for user functions. How are the parameters passed to the
system calls received when invoked from user functions? And how is the process
informed that all system call values have been placed and that it’s time to execute? How
does the system call return back to the user function that invoked it?

a. system call opcode and all parameters are passed through registers (%rax for the
opcode, others for the 0 to 6 parameters)

b. system call is invoked by issuing a software interrupt, aka trap, via an assembly
code instruction syscall. The syscall invokes a trap handler, and that handler
builds an activation record in the kernel stack using the values passed through
registers, executes the system call's implementation, places a return value in
%rax, and then returns from the handler to the instruction after the user's
syscall. The return address—that is, the address of the instruction following the
syscall instruction, is placed in %rcx, and the iret instruction at the end of the
system call implementation consumed the value in %rcx so it knows where to
jump back to.

