
Introduce yourself to the class! 👋 
https://padlet.com/reberhardt7pad/cs110map

Click here 😀

https://padlet.com/reberhardt7pad/cs110map


Welcome to CS 110 👋

Ryan Eberhardt

June 21, 2021



Today’s lecture:



Today’s lecture: a boring sandwich 🥪



Today’s lecture: a boring sandwich 🥪

● Interesting: What the heck is “systems” anyways?

● Boring: How is this class going to work?

● Interesting: What are filesystems, and how do they work?



What the heck is “systems” anyways?



Computer systems

● “Computer systems” is so broad and vague that it seems it could refer to anything 
involving computers


● I view systems as being about building the platform that all application software stands 
on



Computer systems

● “Computer systems” is so broad and vague that it seems it could refer to anything 
involving computers


● I view systems as being about building the platform that all application software stands 
on

● Systems people are the carpenters, masons, electricians, and also the architects and 
civil engineers

○ You’re designing a solution around high-level goals and tradeoffs

○ You’re also getting your hands dirty building it, fixing problems, etc



DDoS Attacks

https://www.reveelium.com/en/ddos-attacks-the-cyber-boogeyman-part-i/



https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/

2015 :-/

1,700 Gbps!!

DDoS Attacks



Cloudflare

133 datacenters

https://blog.cloudflare.com/usa-expansion/



Cloudflare

133 datacenters

https://www.cnbc.com/2014/12/22/cloudflare-to-open-a-data-center-a-week-in-2015.html


Cloudflare

https://support.cloudflare.com/hc/en-us/articles/205177068-Step-1-How-does-Cloudflare-work-



Cloudflare

https://blog.cloudflare.com/

https://blog.cloudflare.com/


Disney: Large-scale rendering

https://www.disneyanimation.com/technology/innovations/hyperion

Without global illumination:



Disney: Large-scale rendering

https://www.disneyanimation.com/technology/innovations/hyperion

With global illumination:



Disney: Large-scale rendering

https://www.disneyanimation.com/technology/innovations/hyperion

Without global illumination:



Disney: Large-scale rendering

https://www.disneyanimation.com/technology/innovations/hyperion

With global illumination:



● “San Fransokyo” contains 83,000 buildings, 260,000 trees, 215,000 
streetlights, and 100,000 vehicles. City detail is based on assessor data from 
San Francisco


● Rendered in four geographically-distributed datacenters

● 55,000 CPU cores, 400 TB of memory

● Many system failures!

Disney: Large-scale rendering



Google Chrome: More complex than you think!

● The modern browser is basically an operating system

● You can do almost anything in a browser:


○ Music synthesis, hardware MIDI interfaces: https://
musiclab.chromeexperiments.com/


○ Render high quality graphics + physics simulations in real time: http://
madebyevan.com/webgl-water/


○ Run Windows 95: https://win95.ajf.me/

● Security and isolation between sites is essential


○ A shady website you stumble upon should never have access to your 
email, bank, etc.

https://musiclab.chromeexperiments.com/
https://musiclab.chromeexperiments.com/
http://madebyevan.com/webgl-water/
http://madebyevan.com/webgl-water/
https://win95.ajf.me/


Google Chrome: More complex than you think!

https://www.chromium.org/developers/design-documents/multi-process-architecture


Google Chrome: More complex than you think!

http://szeged.github.io/sprocket/architecture_overview.html


Today’s lecture: a boring sandwich 🥪

● Interesting: What the heck is “systems” anyways?

● Boring: How is this class going to work?

● Interesting: What are filesystems, and how do they work?



CS 110: Principles of Computer Systems 
👾



Hello world! 👋

● I just graduated the coterm, focused on systems and security

● I was a community college graduate and transfer student

● I have two cats

● I love doing pottery, photography, and listening to music 



Hello world! 👋

Sophie Patrick Ayelet Thea



Course website

● cs110.stanford.edu

● All course info, assignments, links, etc will be posted here

http://cs110.stanford.edu


Lecture format

● Outside of lecture, you’ll have plenty of practice with the “what” of systems 
programming; in lecture, we want to focus on the “why”

○ Going to be discussion-oriented as much as possible


● Lecture is synchronous — please come ready to participate!!

○ Pretty please :)

○ I’ll come up with some creative incentives, e.g. I’ll make you a mug


● Lecture is M/W/F week 1, only M/W after that

https://www.instagram.com/pottedpeasceramics/


Edstem and Slack

● We’ll be using Ed for the Q&A forum

● We’ll be using Slack as a social forum, as well as group chat for your 

discussion section

● Links on the course website!



The art of debugging



The art of debugging

● Let’s imagine we have a 
hypothetical “fancy water 
gadget”



The art of debugging

● Say we’re supposed to pour 
water in on one end and get 
water out the other end



The art of debugging

● Say we’re supposed to pour 
water in on one end and get 
water out the other end


● But maybe this doesn’t 
work, and water leaks 
instead

● What do you do?

● Beginner debugging 

strategies:

● Stare at it until you figure it 

out

● Mess with it until it works



The art of debugging

● There are two critical pieces 
to debugging effectively:

○ Develop a mental model 

of how things are 
supposed to work


○ Figure out what is 
happening instead



The art of debugging

● #1: Develop a mental model 
of how things are supposed 
to work

○ Read documentation

○ Read Stack Overflow

○ Talk to people

○ Try experiments



The art of debugging

● #2: Figure out what is 
happening instead 
○ Somehow need to get 

more visibility into the 
system


○ E.g. add print 
statements, use gdb, try 
other tools we’ll discuss



The art of debugging

● #2: Figure out what is 
happening instead 
○ Somehow need to get 

more visibility into the 
system


○ E.g. add print 
statements, use gdb, try 
other tools we’ll discuss



The art of debugging

● #2: Figure out what is 
happening instead 
○ Somehow need to get 

more visibility into the 
system


○ E.g. add print 
statements, use gdb, try 
other tools we’ll discuss



Office hours

● Unlike previous classes, we will not look at code in office hours

○ One exception: if you’re getting tripped up by syntax / compiler errors


● Our goal is to teach you how to debug your code, not to debug it for you

○ We will help make sure you have the right mental model of what is 

supposed to be happening

○ We will give you suggestions to get more visibility into what is actually 

happening

● We also want to encourage you to program carefully! Systems programming 

requires attention to detail



Grading

● Concept checks: 10%

● Discussion section participation: 10%


○ Sections don’t start until week 2

● Programming assignments: 60%

● Self assessments: 20%



Late policy

● Life happens! Especially in these times

● We cap scores based on lateness:


○ On time: you get up to 100%!

○ Up to 24 hours late: 90% cap

○ 24-48 hours late: 70% cap

○ After 48 hours: please let us know what’s up and how we can help


● I will grant extensions on a case-by-case basis. Please email me in advance



Honor code

● I will be relatively generous with deadlines…

● …but I will not be very generous with honor code violations.

● There exist assignment solutions on the internet


○ We’ve been playing whack-a-mole taking these down, but it’s not easy

● Lucky for us, these solutions have very subtle and unique mistakes

● 2 minute video from Brian Harvey on why you shouldn’t cheat: https://

www.youtube.com/watch?v=hMloyp6NI4E

○ Best case scenario, “you condemn yourself to a life of doing something you 

don’t know how to do and don’t like doing.”

● Please do not be tempted to cheat! It is not worth it! We are here to support you

https://www.youtube.com/watch?v=hMloyp6NI4E
https://www.youtube.com/watch?v=hMloyp6NI4E


Filesystems



Considerations in filesystems

● A filesystem stores persistent data on some storage medium (e.g. hard drive)

● What are some things we might want from a filesystem?


○ Fast read/write performance

○ Low storage overhead (if I have a 1TB drive, I want to be able to store 1TB 

of files)

○ Resilient against data loss/corruption

○ Fancy features: encryption, compression, snapshots, etc.

○ Low complexity, easy to implement without bugs!!!



(live discussion)


