Processes, Threads, and
Browser Design

Ryan Eberhardt

July 21, 2021

Processes

pid = 1000 pid = 1001
stack stack
heap heap
data/globals data/globals
code code
file descriptor table: file descriptor table:
1172137 ... 11213
saved registers: saved registers:
Y%rax | %rbx | %rcx Yorax | %rox | %rcx
Y%rdx | %rsp | %rip %rdx | %rsp | %rip

Processes can synchronize using signals and pipes

Threads

pid = 1000 tid = 1001
stack)
saved registers:
heap Y%rax | Y%rox | %rcx
data/globals| %rdx | %rsp | %rip
code
file descriptor table: tid = 1002

saved registers:

saved registers:
orax | %rox | %rcx

[¢} [¢} (o)
Yorax | %rbox | %rcx %rdx | %rsp | %rip

Yordx | %rsp | %rip

Threads are similar to processes; they have a separate stack and saved registers (and
a handful of other separated things). But they share most resources across the process

Threads

pid = 1000 tid = 1001

stack1

stack2

heap

data/globals

code

file descriptor table:

112|13]...]| 4

saved registers: saved registers:
Yrax | Y%rbx | %rcx %rax | Y%rbx § Y%rcx
Y%ordx | %rsp | %rip Y%rdx | %rsp | %rip

Under the hood, a thread gets its own “process control block” and is scheduled
independently, but it is linked to the process that spawned it

Considerations when designing a browser

Speed

Memory usage
Battery/CPU usage
Ease of development
Security, stability

Considerations when designing a browser

e Speed
e Typically faster to share memory and to use lightweight synchronization primitives
e Processes incur additional context switching overhead
e Memory usage
e Processes use more memory
e Battery/CPU usage
e Processes incur additional context switching overhead
e Ease of development
e Communication is WAY easier using threads
e (That being said, bugs caused by multithreading are extremely hard to track down)
e Security, stability
e Multiprocessing provides isolation. Multithreading does not.

How simple buffer overflows work

; push call arguments, in reverse

push
push
push
call

add

3

2

1

callee ; call subroutine ‘callee’
callee:
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame
...do stuff...
mov esp, ebp
pop ebp ; restore old call frame
ret ; return

esp, 12 ; remove call arguments from frame

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

... previous stuff ...

Function parameters

Return address

Saved base pointer

Local variables

High addresses

Low addresses

How simple buffer overflows work

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...

Low addresses

How simple buffer overflows work

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee: Return address
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame Saved base pointer
...do stuff...

Low addresses

How simple buffer overflows work

High addresses

; push call arguments, in reverse ...previous stuff ...

push 3
push 2
push 1 Function parameters
call callee ; call subroutine ‘callee’
callee:
push ebp ; save old call frame
mov ebp, esp ; initialize new call frame
...do stuff...

Low addresses

How simple buffer overflows work

; push call arguments, in reverse

push
push
push
call

; call subroutine ‘callee’

save old call frame
esp ; initialize new call frame

ebp
; restore old call frame

3

2

1

callee
callee:
push ebp
mov ebp,
...do stuff...
mov esp,
pop ebp
ret

; return

g

... previous stuff ...

Function parameters

High addresses

Low addresses

Any memory corruption can lead to RCE

e This kind of buffer overflow (stack-based buffer overflow overwriting the
return address) is the easiest to understand, but most buffer overflows these
days are way more subtle

e Even a one-byte overflow can be used to get remote code execution: https://
googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-
overflow-and.html

e |f you have any memory corruption, you should assume that an attacker with
enough determination will be able to figure out how to use it to get RCE

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Modern browsers are essentially operating systems

K3 web Apis | MON x +

&« c @ © & https://developer.mozilla.org/en-US/docs/Web/API . v INn D © ¥

Specifications

This is a list of all the APIs that are available.

A
Ambient Light Events

B

Background Tasks
Battery APl iy
Beacon

Bluetooth API

Broadcast Channel API

C

CSS Counter Styles

CSS Font Loading API &
CSSOM

Canvas API

Channel Messaging API
Console API

Credential Management API

D
DOM

F

Fetch API

File System API
Frame Timing API

Fullscreen API

G
Gamepad APl &

Geolocation API

H
HTML Drag and Drop API
High Resolution Time

History API

I

Image Capture API
IndexedDB

Intersection Observer API

L

Long Tasks APl &

Media Session API
Media Source Extensions &

MediaStream Recording

N

Navigation Timing

Network Information APl 4

P

Page Visibility API
Payment Request API
Performance API
Performance Timeline API
Permissions API

Pointer Events

Pointer Lock API
Proximity Events &

Push APl &

R

Resize Observer API

Resource Timing API

Storage Access API

Streams &

T

Touch Events

U

URL API

\Y
Vibration API

W

Web Animations &
Web Audio API

Web Authentication API
Web Crypto API

Web Notifications

Web Storage API

Web Workers API
WebGL

WebRTC

https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API

Modern browsers are essentially operating systems

Storage APIs

Concurrency APls

Hardware APls (e.g. communicate with MIDI devices, even GPU)
Run assembly

Run Windows 95: https://win95.ajf.me/

https://win95.ajf.me/

Motivation for Chrome

It's nearly impossible to build a rendering engine that never crashes or hangs. It's also nearly
impossible to build a rendering engine that is perfectly secure.

In some ways, the state of web browsers around 2006 was like that of the single-user, co-
operatively multi-tasked operating systems of the past. As a misbehaving application in such
an operating system could take down the entire system, so could a misbehaving web page in
a web browser. All it took is one browser or plug-in bug to bring down the entire browser and
all of the currently running tabs.

Modern operating systems are more robust because they put applications into separate
processes that are walled off from one another. A crash in one application generally does not
impair other applications or the integrity of the operating system, and each user's access to
other users' data is restricted.

https://www.chromium.org/developers/design-documents/multi-process-architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 18in M71, 13in M72, 15in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.
e Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for
several reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 18in M71, 13in M72, 15in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.
» Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:

Past experience suggests that potentially exploitable bugs will be present in future
Chrome releases. There were 10 potentially exploitable bugs in renderer components in
ME9, 5in M70, 13in M71, 13in M72, 15 in M73. This volume of bugs holds steady despite
years of investment into developer education, fuzzing, Vulnerability Reward Programs, etc.
Note that this only includes bugs that are reported to us or are found by our team.

Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13in M72, 15 in M73. This volume of bugs holds steady despite years
of investment into developer education, fuzzing, Vulnerability Reward Programs,
etc. Note that this only includes bugs that are reported to us or are found by our team.
e Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 18in M71, 13in M72, 15in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.
e Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 18in M71, 13in M72, 15in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.
» Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned
into an exploit.
» Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as “arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
» Past experience suggests that potentially exploitable bugs will be present in future Chrome
releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 18in M71, 13in M72, 15in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.
e Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into

an exploit.
 Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Chrome architecture

Browser Process 000/ — T x\
.......... —> '
............... QA € » ¢]:
mz n :: < "?
e > 4’ 5 .':
B Renderer Proces
..':...- g@fu :..._:' i .
Merrees > . L. >
»e T

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

Privileged Unprivileged processes:
process: Browser Process 000/ — T X\ Majority of attack surface
Minimal s P k € » ¢ :

attack ",y) : "
surface Q| 7T e Renderer Proces

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

Hey, can
you load coolchat.com for) .
me? e &@:?,7;(,

Sure, TN T T e > .
here’s the data from the me
network response! Renderer
— process for

coolchat.com

Hey,
can you send this network
request to 10.0.1.1107

<o '?:
b s S

Browser
process

|Isolation: Increased robustness

Renderer Process Renderer Process =
- g‘@fo e - g@ﬁ) e Aw, Snap!

A o N e
/ _ /
000/ —_— x‘ o —— x\ —_— x\D meow
€ » ¢) :

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Chrome architecture

HesoLreoD P naicher Browser
' M Channel Chani Profx RenderProcessHost RenderViewHost
é Elies Channel ~ RenderProcessHost i E
- /: : T : E
IPC channels = pipes* HE st / m
. E g Maintwead_________ Renderithwead ____ WESt1 SRR | ____L,
Message passing model E : A
= n|1j| RenderProcess
Events (e.qg. click, = : RenderView
keyStrOKe’ etC) are § . L ResourceDispatcher I WebKit
relayed through these g .B?.'!S’.?.’E! ..
. ' . =
pipes! No signals — e

* they use slightly fancier things these
days, but the idea is still the same

Renderer

....................

..4 E— "|__| ——
- g

" ResourceDispatcher

Sandboxed processes: no access
to network, filesystem, etc

If there is embedded content, may
use multiple threads to render that
content and manage
communication between frames

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

https://www.chromium.org/developers/design-documents/multi-process-architecture

Chromium Rule of Two

The Rule Of 2 is: Pick no more than 2 of “Rule of TWo”
e untrustworthy inputs;
e unsafe implementation language; and

Code which

hiah orivil processes DOOM!
® Nigh privilege. untrustworthy Don't do this.
inputs

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Code written in

an unsafe runs with no
language sandbox
(C/C++) (e.g. browser

process)

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Not good enough

e What does all this work buy us?

e Isolation between tabs

e |[solation between (potentially malicious) websites and the host
e What does it not buy us?

e Isolation between resources within a tab

Embedded content

ADVERTISEMENT

MERRELL

LEARN MORE

A 4
{22

BX

ADVERTISEMENT

Privacy Policy | Feedback

Daily aiil.com

| Home Updated: 00:45 EDT

Wednesday, May 5th 2021 7P\l 69°F

10PM 60°F

5-Day Forecast ADVERTISEMENT

amazon (v} Subscribe “ Save ,m steammore

LU UK. | News | Sports | U.S. Showbiz | Australia | Femail | Health | Science | Money | Video | Travel | Shop | DailyMail TV

Covid-19 | Joe Biden | Derek Chauvin | Kamala Harris | Donald Trump | US Economy | Kim Kardashian | Meghan Markle | Games

ADVERTISEMENT

Iendﬁgrree Refinance Calculator

MAY 5,2021

2.00% 2.06%

Rate

Calculate how much you could save

Rates are at historic lows!

Loan amount &
$400,000

Loan term

15-Year Fixed v
Creditscore

Excellent v

Calculate Payment »

een

Palo Alto

Discover this season's newest menu
additions.

> X

Connecting People to Real Food
Sg

@ oreonons

Two California students, 19 and 20, are found guilty of murdering
Italian cop and sentenced to life in prison for botched 2019 drug

raid while on vacation
a -

MERRELL

Embedded content

http://www.evil.com

Welcome to Evil!

PIN: 1234

Same-origin policy: www.evil.com can embed bank.com, but cannot interact with
bank.com or see its data

Embedded content

e Site Isolation Project (2015-2019) aimed to put resources for different origins in
different processes
e Extremely difficult undertaking. Cross-frame communication is common (JS
postMessage API), and embedded frames need to share render buffers
e Involved rearchitecting the most core parts of Chrome
e Became especially important in Jan 2018: Spectre and Meltdown
e When the hardware fails to uphold its guarantees, JS can read arbitrary
process memory (even kernel memory, and even if your software has no
bugs)!
e Paper/video: https://www.usenix.org/conference/usenixsecurity19/presentation/
reis

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

Still not good enough!

F Google Issues Warning For 2 Bil X +

O B nhttps://www.forbes.com/sites/gordonkelly/2021/07/17/google-chome-warning-zero-day-hack-free-upgrade-chrc B ¥

Forbes Sign in

July 17, 2021 — update

your browsers! -

Google Issues Warning For 2
Billion Chrome Users

Gordon Kelly Senior Contributor ©
Consumer Tech
I write about technology's biggest companies

Google Chrome continues to dominate the web browser market
with more than two billion users worldwide. The flipside is it

also dominates the attention of hackers causing Google to issue

not good enough!

High+, impacting stable

Security-related assert

Other Use-after-free

Other memory unsafety

e https://www.chromium.org/Home/chromium-security/memory-safety
e 70% of high-severity security bugs are caused by memory safety issues

https://www.chromium.org/Home/chromium-security/memory-safety

The limits of sandboxing

Chromium’s security architecture has always been designed to assume that these bugs exist, and code is
sandboxed to stop them taking over the host machine... But we are reaching the limits of sandboxing and site
isolation.

A key limitation is that the process is the smallest unit of isolation, but processes are not cheap.

We still have processes sharing information about multiple sites. For example, the network service is a large
component written in C++ whose job is parsing very complex inputs from any maniac on the network. This
is what we call “the doom zone” in our Rule Of 2 policy: the network service is a large, soft target and
vulnerabilities there are of Critical severity.

Just as Site Isolation improved safety by tying renderers to specific sites, we can imagine doing the same with the
network service: we could have many network service processes, each tied to a site or (preferably) an origin. That
would be beautiful, and would hugely reduce the severity of network service compromise. However, it would also
explode the number of processes Chromium needs, with all the efficiency concerns that raises.

https://www.chromium.org/Home/chromium-security/guts
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md#TOC-Critical-severity

What we’re trying

Lower cost, Higher cost,
less improvement more improvement
Spatial Helpers for Full GC Domain- Components
safety in temporal specific in Rust
C++ libs safety in languages
C++ libs

We expect this strategy will boil down to two major strands:
e Significant changes to the C++ developer experience, with some performance impact.
(For instance, no raw pointers, bounds checks, and garbage collection.)
e An option of a programming language designed for compile-time safety checks with
less runtime performance impact — but obviously there is a cost to bridge between
C++ and that new language.

Anatomy of a sandbox escape

e https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html (2012 but
it’s more accessible than some other writeups)
e First exploit chains together six bugs to escape the sandbox
e Second one uses ten(!!)
e https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-
escaping.html (2019)

https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html

