
Processes, Threads, and
Browser Design

Ryan Eberhardt

July 21, 2021

Processes

pid = 1000

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

pid = 1001

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx
%rdx %rsp %rip

saved registers:

file descriptor table:

Processes can synchronize using signals and pipes

pipe

pipe

SIGS
TOP

Threads

pid = 1000

stack

heap
data/globals

code

1 2 3 …

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

tid = 1001
stack

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

tid = 1002
stack

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

Threads are similar to processes; they have a separate stack and saved registers (and
a handful of other separated things). But they share most resources across the process

Threads

…

pid = 1000
stack1

heap

data/globals

code

1 2 3 …

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

tid = 1001

stack2

1 2 3

%rax %rbx %rcx

%rdx %rsp %rip

saved registers:

file descriptor table:

Under the hood, a thread gets its own “process control block” and is scheduled
independently, but it is linked to the process that spawned it

Considerations when designing a browser

! Speed

! Memory usage

! Battery/CPU usage

! Ease of development

! Security, stability

Considerations when designing a browser

! Speed

! Typically faster to share memory and to use lightweight synchronization primitives

! Processes incur additional context switching overhead

! Memory usage

! Processes use more memory

! Battery/CPU usage

! Processes incur additional context switching overhead

! Ease of development

! Communication is WAY easier using threads

! (That being said, bugs caused by multithreading are extremely hard to track down)

! Security, stability

! Multiprocessing provides isolation. Multithreading does not.

How simple buffer overflows work

… previous stuff …

Function parameters

Return address

Saved base pointer

Local variables

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...
 mov esp, ebp
 pop ebp ; restore old call frame
 ret ; return

add esp, 12 ; remove call arguments from frame

From https://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

How simple buffer overflows work

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

How simple buffer overflows work

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

How simple buffer overflows work

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

How simple buffer overflows work

… previous stuff …

Function parameters

High addresses

Low addresses

; push call arguments, in reverse
push 3
push 2
push 1
call callee ; call subroutine ‘callee'

 callee:
 push ebp ; save old call frame
 mov ebp, esp ; initialize new call frame
 ...do stuff...

Saved base pointer

Return address

Local variables

 mov esp, ebp
 pop ebp ; restore old call frame
 ret ; return

💣😓

Any memory corruption can lead to RCE

! This kind of buffer overflow (stack-based buffer overflow overwriting the
return address) is the easiest to understand, but most buffer overflows these
days are way more subtle

! Even a one-byte overflow can be used to get remote code execution: https://
googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-
overflow-and.html

! If you have any memory corruption, you should assume that an attacker with
enough determination will be able to figure out how to use it to get RCE

https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html
https://googleprojectzero.blogspot.com/2016/12/chrome-os-exploit-one-byte-overflow-and.html

Modern browsers are essentially operating systems

https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API

Modern browsers are essentially operating systems

! Storage APIs

! Concurrency APIs

! Hardware APIs (e.g. communicate with MIDI devices, even GPU)

! Run assembly

! Run Windows 95: https://win95.ajf.me/

https://win95.ajf.me/

Motivation for Chrome

It's nearly impossible to build a rendering engine that never crashes or hangs. It's also nearly
impossible to build a rendering engine that is perfectly secure.
In some ways, the state of web browsers around 2006 was like that of the single-user, co-
operatively multi-tasked operating systems of the past. As a misbehaving application in such
an operating system could take down the entire system, so could a misbehaving web page in
a web browser. All it took is one browser or plug-in bug to bring down the entire browser and
all of the currently running tabs.
Modern operating systems are more robust because they put applications into separate
processes that are walled off from one another. A crash in one application generally does not
impair other applications or the integrity of the operating system, and each user's access to
other users' data is restricted.

https://www.chromium.org/developers/design-documents/multi-process-architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for
several reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future

Chrome releases. There were 10 potentially exploitable bugs in renderer components in
M69, 5 in M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite
years of investment into developer education, fuzzing, Vulnerability Reward Programs, etc.
Note that this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years
of investment into developer education, fuzzing, Vulnerability Reward Programs,
etc. Note that this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned
into an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Motivation for Chrome

Compromised renderer processes (also known as "arbitrary code execution" attacks in the renderer
process) need to be explicitly included in a browser’s security threat model. We assume that
determined attackers will be able to find a way to compromise a renderer process, for several
reasons:
• Past experience suggests that potentially exploitable bugs will be present in future Chrome

releases. There were 10 potentially exploitable bugs in renderer components in M69, 5 in
M70, 13 in M71, 13 in M72, 15 in M73. This volume of bugs holds steady despite years of
investment into developer education, fuzzing, Vulnerability Reward Programs, etc. Note that
this only includes bugs that are reported to us or are found by our team.

• Security bugs can often be made exploitable: even 1-byte buffer overruns can be turned into
an exploit.

• Deployed mitigations (like ASLR or DEP) are not always effective.

https://www.chromium.org/Home/chromium-security/site-isolation

https://www.chromium.org/Home/chromium-security/site-isolation

Chrome architecture

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

Unprivileged processes:
Majority of attack surface

Privileged
process:
Minimal
attack

surface

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Sandboxing: Defense against RCE

Hey, can
you load coolchat.com for

me?

Renderer
process for

coolchat.com

Browser
process

Sure,
here’s the data from the

network response!

Hey,
can you send this network

request to 10.0.1.110?

????

Isolation: Increased robustness

REALLY CUTE diagrams from https://developers.google.com/web/updates/2018/09/inside-browser-part1
(great read!)

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Chrome architecture

https://www.chromium.org/developers/design-documents/multi-process-architecture (slightly out of date)

IPC channels = pipes*

Sandboxed processes: no access
to network, filesystem, etc

If there is embedded content, may
use multiple threads to render that
content and manage
communication between frames

Events (e.g. click,
keystroke, etc) are
relayed through these
pipes! No signals

Message passing model

* they use slightly fancier things these
days, but the idea is still the same

https://www.chromium.org/developers/design-documents/multi-process-architecture

Chromium Rule of Two

The Rule Of 2 is: Pick no more than 2 of

! untrustworthy inputs;

! unsafe implementation language; and

! high privilege.

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Not good enough

! What does all this work buy us?

! Isolation between tabs

! Isolation between (potentially malicious) websites and the host

! What does it not buy us?

! Isolation between resources within a tab

Embedded content

Embedded content

http://www.evil.com

Welcome to Evil!

PIN: 1234

Same-origin policy: www.evil.com can embed bank.com, but cannot interact with
bank.com or see its data

Embedded content

! Site Isolation Project (2015-2019) aimed to put resources for different origins in
different processes

! Extremely difficult undertaking. Cross-frame communication is common (JS
postMessage API), and embedded frames need to share render buffers

! Involved rearchitecting the most core parts of Chrome

! Became especially important in Jan 2018: Spectre and Meltdown

! When the hardware fails to uphold its guarantees, JS can read arbitrary

process memory (even kernel memory, and even if your software has no
bugs)!

! Paper/video: https://www.usenix.org/conference/usenixsecurity19/presentation/
reis

https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis

Still not good enough!

July 17, 2021 — update
your browsers!

Still not good enough!

! https://www.chromium.org/Home/chromium-security/memory-safety

! 70% of high-severity security bugs are caused by memory safety issues

https://www.chromium.org/Home/chromium-security/memory-safety

The limits of sandboxing

Chromium’s security architecture has always been designed to assume that these bugs exist, and code is
sandboxed to stop them taking over the host machine… But we are reaching the limits of sandboxing and site
isolation.

A key limitation is that the process is the smallest unit of isolation, but processes are not cheap.

We still have processes sharing information about multiple sites. For example, the network service is a large
component written in C++ whose job is parsing very complex inputs from any maniac on the network. This
is what we call “the doom zone” in our Rule Of 2 policy: the network service is a large, soft target and
vulnerabilities there are of Critical severity.

Just as Site Isolation improved safety by tying renderers to specific sites, we can imagine doing the same with the
network service: we could have many network service processes, each tied to a site or (preferably) an origin. That
would be beautiful, and would hugely reduce the severity of network service compromise. However, it would also
explode the number of processes Chromium needs, with all the efficiency concerns that raises.

https://www.chromium.org/Home/chromium-security/guts
https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md
https://googleprojectzero.blogspot.com/2020/02/several-months-in-life-of-part1.html
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md#TOC-Critical-severity

What we’re trying

We expect this strategy will boil down to two major strands:
! Significant changes to the C++ developer experience, with some performance impact.

(For instance, no raw pointers, bounds checks, and garbage collection.)
! An option of a programming language designed for compile-time safety checks with

less runtime performance impact — but obviously there is a cost to bridge between
C++ and that new language.

Anatomy of a sandbox escape

! https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html (2012 but
it’s more accessible than some other writeups)

! First exploit chains together six bugs to escape the sandbox

! Second one uses ten(!!)

! https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-
escaping.html (2019)

https://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html
https://googleprojectzero.blogspot.com/2019/04/virtually-unlimited-memory-escaping.html

