
Semaphores

Ryan Eberhardt

July 26, 2021

Semaphores

thread1

Semaphores

thread1

semaphore.wait()

If necessary, waits for
a ball to be added to

the bucket; then,
takes the ball

Semaphores

thread1

semaphore.wait()

If necessary, waits for
a ball to be added to

the bucket; then,
takes the ball

Semaphores

thread1

semaphore.wait()

If necessary, waits for
a ball to be added to

the bucket; then,
takes the ball

Semaphores

thread1

semaphore.wait() (again)

If necessary, waits for
a ball to be added to

the bucket; then,
takes the ball

Semaphores

thread1 (blocked)

semaphore.wait() (again)

If necessary, waits for
a ball to be added to

the bucket; then,
takes the ball

Semaphores

thread1 (blocked) thread2

semaphore.wait() (again)

Semaphores

thread1 (blocked) thread2

semaphore.wait() (again) semaphore.signal()

Adds a ball to the
bucket, and wakes up
any threads that were
waiting for one to be
added

Semaphores

thread1 (blocked) thread2

semaphore.wait() (again) semaphore.signal()

Adds a ball to the
bucket, and wakes up
any threads that were
waiting for one to be
added

Semaphores

thread1 thread2

semaphore.wait() (again)

Adds a ball to the
bucket, and wakes up
any threads that were
waiting for one to be
added

thread1 is now
unblocked!

Semaphores

thread1 thread2

semaphore.wait() (again)

Adds a ball to the
bucket, and wakes up
any threads that were
waiting for one to be
added

Semaphores

thread1 thread2

semaphore.wait() (again)

Semaphores

thread1 thread2

Semaphore methods

● signal():

○ Adds a ball to the bucket

○ Never blocks

● wait():

○ If a ball is in the bucket, takes the ball and returns immediately

○ If no ball is in the bucket, waits until one is available, then takes the ball and

returns

● There isn’t anything actually stored in the bucket. (Under the hood, semaphores

are implemented with a simple counter indicating how many “balls” (or whatever)
are in the bucket.) But they are very useful for synchronizing between threads

Producer-consumer: transferring data between
threads

thread1

Buffer:
SomeStruct {
 …
}

Mutex: Unlocked

thread1

Buffer:
SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait()

Producer-consumer: transferring data between
threads

thread1

semaphore.wait()

Buffer:
SomeStruct {
 …
}

Mutex: Unlocked

Producer-consumer: transferring data between
threads

thread1

Buffer:
SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait()

Producer-consumer: transferring data between
threads

thread1

Buffer:
SomeStruct {
 …
}

Mutex: Unlocked

mutex.lock()

Producer-consumer: transferring data between
threads

thread1

Buffer:
SomeStruct {
 …
}

Mutex: Locked

mutex.lock()

Producer-consumer: transferring data between
threads

thread1

Buffer:

SomeStruct {
 …
}

Mutex: Locked

Producer-consumer: transferring data between
threads

thread1

Buffer:

SomeStruct {
 …
}

Mutex: Locked

mutex.unlock()

Producer-consumer: transferring data between
threads

thread1

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

mutex.unlock()

Producer-consumer: transferring data between
threads

thread1

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 (blocked)

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again) mutex.lock()

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

semaphore.wait() (again) mutex.lock()

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

semaphore.wait() (again) mutex.unlock()

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again) mutex.unlock()

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again) semaphore.signal()

Producer-consumer: transferring data between
threads

thread1 (blocked) thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again) semaphore.signal()

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

semaphore.wait() (again)

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

mutex.lock()

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

mutex.lock()

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Locked

mutex.unlock()

Producer-consumer: transferring data between
threads

thread1 thread2

SomeStruct {
 …
}

Buffer:

SomeStruct {
 …
}

Mutex: Unlocked

mutex.unlock()

Producer-consumer: transferring data between
threads

