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Semaphore methods

e signall():
o Adds a ball to the bucket
o Never blocks

e walit():
o If a ball is in the bucket, takes the ball and returns immediately
o If no ball is In the bucket, waits until one Is available, then takes the ball and

returns

e There isn’t anything actually stored in the bucket. (Under the hood, semaphores
are implemented with a simple counter indicating how many “balls” (or whatever)
are in the bucket.) But they are very useful for synchronizing between threads
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