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Semaphore methods

● signal():

○ Adds a ball to the bucket

○ Never blocks


● wait():

○ If a ball is in the bucket, takes the ball and returns immediately

○ If no ball is in the bucket, waits until one is available, then takes the ball and 

returns

● There isn’t anything actually stored in the bucket. (Under the hood, semaphores 

are implemented with a simple counter indicating how many “balls” (or whatever) 
are in the bucket.) But they are very useful for synchronizing between threads
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