Semaphores

Ryan Eberhardt

July 26, 2021




Semaphores




Semaphores

semaphore.wait()

If necessary, waits for ¢
a ball to be added to
the bucket; then,
takes the ball

/

/\

thread




Semaphores

semaphore.wait()

It necessary, waits for
a ball to be added to
the bucket; then,
takes the ball

/\

thread




Semaphores

semaphore.wait()

If necessary, waits for ¢
a ball to be added to
the bucket; then,
takes the ball

%

/\

thread



Semaphores

semaphore.wait() (again)

If necessary, waits for ¢
a ball to be added to
the bucket; then,
takes the ball

/

°o/\

thread



Semaphores

semaphore.wait() (again)

It necessary, waits for
a ball to be added to
the bucket; then,
takes the ball

A

°o/\

thread1 (blocked)



Semaphores

semaphore.wait() (again)

O O

N
N\

o/ /\ @

thread1 (blocked) thread?



Semaphores

semaphore.wait() (again) semaphore.signal()

N

Adds a ball to the
bucket, and wakes up
any threads that were

waiting for one to be
added

A

o/ /\

thread1 (blocked) thread?



Semaphores

semaphore.wait() (again) semaphore.signal()

Adds a ball to the
bucket, and wakes up
any threads that were

waiting for one to be
added

A

o/ /\

thread1 (blocked) thread?



Semaphores

semaphore.wait() (again)

| ¢ Adds a ball to the
thread1 is now bucket, and wakes up
unblocked! any threads that were
waiting for one to be
\ added

A

o/ /\

thread thread?




Semaphores

semaphore.wait() (again)

° Adds a ball to the
bucket, and wakes up
any threads that were
waiting for one to be

\ added

o/ /\

thread thread?



Semaphores

semaphore.wait() (again)

/‘ N\

o/ /\

thread thread?



Semaphores

O O

/ N\

Q‘/\ /\

thread thread?



Semaphore methods

e signall():
o Adds a ball to the bucket
o Never blocks

e walit():
o If a ball is in the bucket, takes the ball and returns immediately
o If no ball is In the bucket, waits until one Is available, then takes the ball and

returns

e There isn’t anything actually stored in the bucket. (Under the hood, semaphores
are implemented with a simple counter indicating how many “balls” (or whatever)
are in the bucket.) But they are very useful for synchronizing between threads



Producer-consumer: transferring data between

threads

&

/\

thread

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait()
@

/

/\

thread

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait()

(>

/\

thread

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait()

S

%

/\

thread

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

mutex.lock()

S

%

/\

thread

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

mutex.lock()

S

%

/\

thread

SomesStruct {
Mutex: Locked Buffer:

}




Producer-consumer: transferring data between

threads
Somestruct { Q
b /0

/\

thread

Mutex: Locked Buffer: ‘ ‘




Producer-consumer: transferring data between

threads

mutex.unlock()

@
Somestruct {

- @

/\

thread

Mutex: Locked Buffer: ‘ ‘




Producer-consumer: transferring data between

threads

mutex.unlock()

@
Somestruct {

- @

/\

thread

Mutex: Unlocked Buffer: ‘ ‘




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

@
SomesStruct {

- @

/\

thread

Mutex: Unlocked Buffer: ‘ ‘




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

SomesStruct { Q

)
N\

°o/\

thread1 (blocked)

Mutex: Unlocked Buffer: ‘ ‘




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

@
SomesStruct {

o \
AN

SomesStruct {

}

o/ /\

thread1 (blocked) thread?

Mutex: Unlocked Buffer: ‘




Producer-consumer: transferring data between

threads
semaphore.wait() (again) mutex.lock()
SomesStruct { Q Q
} N SomesStruct {
N }

o/ /\

thread1 (blocked) thread?

Mutex: Unlocked Buffer: ‘




Producer-consumer: transferring data between

threads
semaphore.wait() (again) mutex.lock()
SomesStruct { Q Q
} N SomesStruct {
N }

o/ /\

thread1 (blocked) thread?

Mutex: Locked Buffer: ‘




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

@
SomesStruct {

o \
AN

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Locked Buffer:

}




Producer-consumer: transferring data between

threads
semaphore.wait() (again) mutex.unlock()
SomesStruct { Q Q
- AN
N\

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Locked Buffer:

}




Producer-consumer: transferring data between

threads
semaphore.wait() (again) mutex.unlock()
SomesStruct { Q Q
- AN
N\

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait() (again) semaphore.signal()

@
Somestruct {

- N

A

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads
semaphore.wait() (again) semaphore.signal()
SomesStruct { Q Q
}
N\

o/ /\

thread1 (blocked) thread?

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

@
Somestruct {

o N\

o/ /\

thread thread?

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

semaphore.wait() (again)

@ @
Somestruct {

- @

o/ /\

thread thread?

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

mutex.lock()

@ @
Somestruct {

- /@ \
o/ /\
thread thread?2

SomesStruct {
Mutex: Unlocked Buffer:

}




Producer-consumer: transferring data between

threads

mutex.lock()

@ @
SomesStruct {

- /@ \
o/ /\
thread thread?2

SomesStruct {
Mutex: Locked Buffer:

}




Producer-consumer: transferring data between

threads
Somestruct { Q Q
- AN
SomesStruct {
}
PVAN /\
thread1 thread?

Mutex: Locked Buffer: ‘




Producer-consumer: transferring data between

threads

mutex.unlock()

@ @
Somestruct {

- @

SomesStruct {

}

o/ /\

thread thread?

Mutex: Locked Buffer: ‘




Producer-consumer: transferring data between

threads

mutex.unlock()

@ @
SomesStruct {

- @

SomesStruct {

}

o/ /\

thread thread?

Mutex: Unlocked Buffer: ‘




