
MapReduce

Ryan Eberhardt

August 16, 2021

Ryan’s Sandwiches

● Let’s say Ryan has developed
an amazing new sandwich
recipe

ryan

Ryan’s Sandwiches

● Let’s say Ryan has developed
an amazing new sandwich
recipe

● This involves prepping some
ingredients and combining them
in a special way to produce a
final product

ryan

Ryan’s Sandwiches

● Let’s say Ryan has developed
an amazing new sandwich
recipe

● This involves prepping some
ingredients and combining them
in a special way to produce a
final product

ryan

Ryan’s Sandwiches

● Let’s say Ryan has developed
an amazing new sandwich
recipe

● This involves prepping some
ingredients and combining them
in a special way to produce a
final product

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Ryan’s Sandwiches

● Ryan’s restaurant is increasing
in popularity, but he can’t keep
up with the demand

● On top of honing his recipe,
now he needs to worry about
hiring/training employees and
designing a process to make
everyone productive

ryan

Pam’s Pottery

● Next door, Pam has designed a
new mug that is a smashing
success

● Now she needs to figure out
how to scale her process

Designing for scalability

● There are two separate problems here:

○ Doing some domain-specific work (e.g. making a killer sandwich)

○ Scaling that work up: coordinating many people, handling edge cases

(e.g. workers get sick or fail to do good work)

● It would be better to separate these problems:

○ Let domain experts focus on what they’re good at without needing to
think about how to manage hundreds of employees

○ Hire a “coach” or “orchestrator” who specializes in coordinating
employees, without any domain knowledge

Assembly/“reduce”
phase

Prep/“map” phase

MapReduce

● We can ask Ryan the Chef to break up
the process of making a sandwich into
two phases: a “map” (prep) phase,
and a “reduce” (assembly) phase

○ Ryan writes instructions for each

step in a program

● The orchestrator then handles hiring

employees, assigning them to tasks
within each phase, handling failures,
etc

ryan

Inputs Outputs

Map
1

2

3

1
2

3

1
2 3

1 2 3

1
2

3

Map Shuffle/Group
1

2

3

1
2

3

1
2 3

1 2 3

1
2

3

1

2

3

Map Shuffle/Group Reduce
1

2

3

1
2

3

1

2

3

1
2 3

1 2 3

1
2

3

MapReduce is versatile!

● Once this framework is in place, it can be used for any task that can be broken into
“map” and “reduce” steps

● MapReduce was originally introduced to build Google’s search index

○ CS 106B-level search index:

■ Create map<search term, list of documents>. When looking up a search
term, you can easily get a list of documents matching that term

■ May also include a term frequency in the document, or sort the list of
documents by frequency

■ Populating this sequentially: for every document, for every term:
map[term].push_back(document)

○ Take CS 124 to learn about better search indexes :)

index.html

lecture-1.html

lab-3.html

midterms.html

CS110 index.html:1 lecture-1.html:1

filesystems lecture-1.html:1 midterms.html:1

processes lab-3.html:1 midterms.html:1

quicksort index.html:1

systems index.html:1

threads lab-3.html:2 midterms.html:1

unix lecture-1.html:1

Welcome index.html:1

Inputs Outputs

Map

index.html

lecture-1.html

lab-3.html

midterms.html

Welcome index.html

CS110 index.html

systems index.html

CS110 lecture-1.html

unix lecture-1.html

filesystems lecture-1.html

processes lab-3.html

threads lab-3.html

threads lab-3.html

processes midterms.html

threads midterms.html

filesystems midterms.html

systems index.html

Map Shuffle/Group

index.html

lecture-1.html

lab-3.html

midterms.html

Welcome index.html

CS110 index.html

systems index.html

CS110 lecture-1.html

unix lecture-1.html

filesystems lecture-1.html

processes lab-3.html

threads lab-3.html

threads lab-3.html

processes midterms.html

threads midterms.html

filesystems midterms.html

CS110 index.html lecture-1.html

filesystems lecture-1.html  
 midterms.html

processes lab-3.html midterms.html

threads lab-3.html lab-3.html
 midterms.html

unix lecture-1.html

Welcome index.html

CS110 index.html:1 lecture-1.html:1

filesystems lecture-1.html:1 midterms.html:1

processes lab-3.html:1 midterms.html:1

systems index.html:1

threads lab-3.html:2 midterms.html:1

unix lecture-1.html:1

Welcome index.html:1

Reduce
(shuffle output)

systems index.html

CS110 index.html lecture-1.html

filesystems lecture-1.html  
 midterms.html

processes lab-3.html midterms.html

threads lab-3.html lab-3.html  
 midterms.html

unix lecture-1.html

Welcome index.html

Parallelization

● Parallelizing the “map” step is easy

○ If we have n “ingredients” and m

“mappers”/workers, have each
mapper process n/m ingredients

Parallelization

● Parallelizing the “map” step is easy

○ If we have n “ingredients” and m

“mappers”/workers, have each mapper
process n/m ingredients

● How should we now parallelize the “shuffle/
group” step?

○ If there are 50 ingredient piles, and

every worker has to go to every pile to
get some ingredients, it’s going to be a
mess!

○ Better idea: have the mapper workers
split their output into separate piles,
pre-organized for each reducer

lecture-1.html.input
<html>...</html>

lab-3.html.input
<html>...</html>

midterms.html.input
<html>...</html>

mapper

mapper

mapper

lecture-1.html.0000.mapped
filesystems lecture-1.html

CS110 lecture-1.html
filesystems lecture-1.html

lecture-1.html.0001.mapped
processes lecture-1.html

lab-3.html.0000.mapped
multithreading lab-3.html

lab-3.html.0001.mapped
quicksort lab-3.html

processes lab-3.html
processes lab-3.html

midterms.html.0000.mapped
filesystems midterm.html

multithreading midterm.html

midterms.html.0001.mapped
processes midterm.html

concat/sort/GBK

concat/sort/GBK

0000.grouped*

CS110 lecture-1.html
filesystems lecture-1.html lecture-1.html midterm.html

multithreading lab-3.html midterm.html

0001.grouped*

processes lecture-1.html lab-3.html lab-3.html lab-3.html
quicksort lab-3.html

* You won’t actually create .grouped files in Assignment 6; this is done in
memory for better performance.

reducer

reducer

0000.output
CS110 lecture-1.html:1

filesystems lecture-1.html:2 midterm.html:1
multithreading lab-3.html:1 midterm.html:1

0001.output
processes lecture-1.html:1 lab-3.html:3 midterm.html:1

quicksort lab-3.html:1

More MapReduce applications

● Log analysis: which IP addresses are suspicious?

○ Mapper: log line → (IP : content accessed)

○ Reducer: (IP : all content accessed) → probability of being malicious

● Nearby gas stations

○ Mapper: gas station → (POI : distance to station)

○ Reducer: (POI : distance to all nearby stations) → (POI : closest station)

Limitations

● MapReduce is highly disk-based

● Fixed architecture: problem must be broken down into a single map stage

and a single reduce stage

● Oriented around batch processing

