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Designing for scalability

● There are two separate problems here:

○ Doing some domain-specific work (e.g. making a killer sandwich)

○ Scaling that work up: coordinating many people, handling edge cases 

(e.g. workers get sick or fail to do good work)

● It would be better to separate these problems:


○ Let domain experts focus on what they’re good at without needing to 
think about how to manage hundreds of employees


○ Hire a “coach” or “orchestrator” who specializes in coordinating 
employees, without any domain knowledge



Assembly/“reduce” 
phase

Prep/“map” phase

MapReduce

● We can ask Ryan the Chef to break up 
the process of making a sandwich into 
two phases: a “map” (prep) phase, 
and a “reduce” (assembly) phase

○ Ryan writes instructions for each 

step in a program

● The orchestrator then handles hiring 

employees, assigning them to tasks 
within each phase, handling failures, 
etc
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MapReduce is versatile!

● Once this framework is in place, it can be used for any task that can be broken into 
“map” and “reduce” steps


● MapReduce was originally introduced to build Google’s search index

○ CS 106B-level search index:


■ Create map<search term, list of documents>. When looking up a search 
term, you can easily get a list of documents matching that term


■ May also include a term frequency in the document, or sort the list of 
documents by frequency


■ Populating this sequentially: for every document, for every term: 
map[term].push_back(document)


○ Take CS 124 to learn about better search indexes :)
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● Parallelizing the “map” step is easy

○ If we have n “ingredients” and m 

“mappers”/workers, have each mapper 
process n/m ingredients


● How should we now parallelize the “shuffle/
group” step?

○ If there are 50 ingredient piles, and 

every worker has to go to every pile to 
get some ingredients, it’s going to be a 
mess!


○ Better idea: have the mapper workers 
split their output into separate piles, 
pre-organized for each reducer
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More MapReduce applications

● Log analysis: which IP addresses are suspicious?

○ Mapper: log line → (IP : content accessed)

○ Reducer: (IP : all content accessed) → probability of being malicious


● Nearby gas stations

○ Mapper: gas station → (POI : distance to station)

○ Reducer: (POI : distance to all nearby stations) → (POI : closest station)



Limitations

● MapReduce is highly disk-based

● Fixed architecture: problem must be broken down into a single map stage 

and a single reduce stage

● Oriented around batch processing


