
Asynchronous I/O

Ryan Eberhardt

August 18, 2021

Today

● Threads work great — but where do they fall short?

● Introducing an alternative way to write programs called “asynchronous I/O”

● Where do asynchronous I/O models fall short? What can we do about it?

Concurrency with threads

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

😴 main thread

✊🧐 client 1 connects

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

 😄 client 1 connected

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

🥳 main thread

 😄 client 1 connected

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

😴 main thread

 😄 client 1 connected
✊🧐 client 2 connects…

Concurrency with threads

● Here’s our basic echo server from Lecture 15: 
int main(int argc, char *argv[]) {  
 int serverSocket = createServerSocket(12345);  
 if (serverSocket < 0) {  
 cout << "Error: could not start server" << endl;  
 return 1;  
 }  
 size_t connCount = 0;  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 echo(clientSocket, connId);  
 }  
 return 0;  
}

● This code works great… but can only handle one client at a time

😴 main thread

 😄 client 1 connected
✊🧐 client 2 connects…

● When waiting for a client to
connect or when waiting for the
client to send data, the main
thread is blocked. Thread is
pulled off the processor so that
other threads can do things

○ Usually a good thing

○ But this prevents the thread

from doing other things in
the meantime

Concurrency with threads

● No problem! We add a ThreadPool: 
int main(int argc, char *argv[]) {  
 ...  
 while (true) {  
 int clientSocket = accept(serverSocket, NULL, NULL);  
 size_t connId = connCount++;  
 pool.schedule([clientFd, connId]{  
 echo(clientSocket, connId);  
 });  
 }  
}

● Now the main thread waits for new incoming connections, while ThreadPool threads wait for clients to send
stuff. Implications:

○ Number of simultaneous clients is bounded by the number of threads we can have

○ We switch between talking to clients by switching threads on/off the CPU (context switching)

😴 main thread

😴 TP thread 1 😴 TP thread 2

The Problem with Threads

● Memory overhead: If we have many threads, we consume a lot of memory. This
places an upper bound on how many threads we can have

○ Each thread has its own stack space that needs to get managed by the OS.

Trying to have 5000 concurrent connections? 5000 threads = 5000 stack
segments = 40GB at 8MB/stack! (yike)

● Context switching cost: When we use blocking functions within a thread, we discard
the rest of the CPU time slice and incur a cost on switching the thread to be blocked.
○ Each switch is expensive! Virtual address space needs to get switched, registers

need to get restored, cache gets stepped on, etc
○ This is a big cost for high-performance situations (servers). If we have to block on

a client, maybe that thread could've done some other work instead.

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

🥳 thread 1

⏱

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

🥳 thread 1

⏱

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

🥳 thread 1

⏱

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

🥳 thread 1

⏱

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

😴 thread 1

⏱

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 1 time slice

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

thread 2 time slice

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

🥳 thread 2

thread 2 time slice

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

🥳 thread 2

thread 2 time slice

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

🥳 thread 2

thread 2 time slice

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

🥳 thread 2

thread 2 time slice

The Problem with Threads

static void echo(int clientFd, size_t connId) {
 sockbuf sb(clientFd);
 iosockstream ss(&sb);
 while (true) {
 string line;
 getline(ss, line);
 if (ss.eof() || ss.fail()) {
 break;
 }
 ss << "\t" << line << endl;
 }
}

time
t=0

thread 1
starts

running

😴 thread 1

⏱

thread 1
blocked,
thread 2

starts
running

😴 thread 2

thread 2
blocked,
thread 3

starts
running

The Problem with Threads

● In an I/O-bound application such as a web server, very little time is spent on
the CPU before the thread gets blocked and we incur the cost of a context
switch

● When a huge number of threads are performing I/O with little computation,
context switching represents a significant fraction of CPU time

time

t=0

context
switches

threads active

Roadmap

Threads are great!

But we can’t have too many of them, and context
switches are expensive

Is there a way we can have concurrency with less
penalties?

Non-blocking I/O

● Traditionally, the read() sys call would block if there is more data to be read
but not available.

○ This causes the thread to get pulled off the CPU. It can’t do anything else

in the meantime.

● Instead, we could have read() return a special error value instead of blocking

○ If we see that a client hasn’t sent us anything yet, we can do other useful
work on this thread e.g. reading from other descriptors we’re managing.

● This allows us to have concurrent I/O with one thread!

Demo program: receive-two

● Let’s implement a basic program that receives data from two clients and
prints received data to the terminal as it comes in, without any threads

○ First: does it make sense why this is difficult without threads?

● Wait for two clients to connect, then pass their file descriptors to
receiveTwoConnections:

int main(int argc, char *argv[]) {
 int waitingListFd = createServerSocket(12345);
 if (waitingListFd == -1) {
 cerr << "Failed to bind to port 12345" << endl;
 return 1;
 }

 receiveTwoConnections(
 accept(waitingListFd, NULL, NULL),
 accept(waitingListFd, NULL, NULL));
 return 0;
}

static void receiveTwoConnections(int client1, int client2) {
 cout << "Printing from two incoming connections" << endl;

 bool client1StillSending = true;
 bool client2StillSending = true;
 while (client1StillSending || client2StillSending) {
 if (client1StillSending) {
 client1StillSending = receiveFromFd(client1, "CLIENT 1");
 if (!client1StillSending) {
 close(client1);
 }
 }
 if (client2StillSending) {
 client2StillSending = receiveFromFd(client2, "CLIENT 2");
 if (!client2StillSending) {
 close(client2);
 }
 }
 }
 cout << "Connections closed" << endl;
}

/**
 * Trys reading from the specified file descriptor, printing out the received
 * data if there is any. Returns `true` if the connection is still open, or
 * `false` if the connection has been closed.
 */
static bool receiveFromFd(int fd, const char *clientName) {
 while (true) {
 char buf[512];
 size_t numRead = read(fd, buf, sizeof(buf));
 if (numRead == 0) {
 // client closed the connection
 return false;
 } else if (numRead == -1) {

 // read() failed
 perror("read");
 return false;

 }

 // If we get here, numRead must be greater than 0, so we actually
 // received something
 cout << clientName << ": " << string(buf, numRead) << endl;
 }
}

😴

If client 2 sends data right
now, we won’t see it!

😴 thread 1

static void receiveTwoConnections(int client1, int client2) {
 cout << "Printing from two incoming connections" << endl;

 configureAsNonblocking(client1);
 configureAsNonblocking(client2);

 bool client1StillSending = true;
 bool client2StillSending = true;
 while (client1StillSending || client2StillSending) {
 if (client1StillSending) {
 client1StillSending = receiveFromFd(client1, "CLIENT 1");
 if (!client1StillSending) {
 close(client1);
 }
 }
 if (client2StillSending) {
 client2StillSending = receiveFromFd(client2, "CLIENT 2");
 if (!client2StillSending) {
 close(client2);
 }
 }
 }
 cout << "Connections closed" << endl;
}

/**
 * Trys reading from the specified file descriptor, printing out the received
 * data if there is any. Returns `true` if the connection is still open, or
 * `false` if the connection has been closed.
 */
static bool receiveFromFd(int fd, const char *clientName) {
 while (true) {
 char buf[512];
 size_t numRead = read(fd, buf, sizeof(buf));
 if (numRead == 0) {
 // client closed the connection
 return false;
 } else if (numRead == -1) {

 // read() failed
 perror("read");
 return false;

 }

 // If we get here, numRead must be greater than 0, so we actually
 // received something
 cout << clientName << ": " << string(buf, numRead) << endl;
 }
}

static void configureAsNonblocking(int fd) {
 fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK);
}

Set O_NONBLOCK on the
socket

If there is no more data to
read at the moment, but
the connection is still open,
read() will return -1 with
errno=EWOULDBLOCK

static void receiveTwoConnections(int client1, int client2) {
 cout << "Printing from two incoming connections" << endl;

 configureAsNonblocking(client1);
 configureAsNonblocking(client2);

 bool client1StillSending = true;
 bool client2StillSending = true;
 while (client1StillSending || client2StillSending) {
 if (client1StillSending) {
 client1StillSending = receiveFromFd(client1, "CLIENT 1");
 if (!client1StillSending) {
 close(client1);
 }
 }
 if (client2StillSending) {
 client2StillSending = receiveFromFd(client2, "CLIENT 2");
 if (!client2StillSending) {
 close(client2);
 }
 }
 }
 cout << "Connections closed" << endl;
}

/**
 * Trys reading from the specified file descriptor, printing out the received
 * data if there is any. Returns `true` if the connection is still open, or
 * `false` if the connection has been closed.
 */
static bool receiveFromFd(int fd, const char *clientName) {
 while (true) {
 char buf[512];
 size_t numRead = read(fd, buf, sizeof(buf));
 if (numRead == 0) {
 // client closed the connection
 return false;
 } else if (numRead == -1) {
 if (errno == EAGAIN || errno == EWOULDBLOCK) {
 // client is still connected, but there is nothing to read
 // right now. read() would have normally blocked, but we
 // configured the fd to be non-blocking, so we see EAGAIN
 // instead
 return true;
 } else {
 // read() failed
 perror("read");
 return false;
 }
 }

 // If we get here, numRead must be greater than 0, so we actually
 // received something
 cout << clientName << ": " << string(buf, numRead) << endl;
 }
}

static void configureAsNonblocking(int fd) {
 fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK);
}

Demo: /usr/class/cs110/samples/aio/receive-two

😓

😓

static void receiveTwoConnections(int client1, int client2) {
 cout << "Printing from two incoming connections" << endl;

 configureAsNonblocking(client1);
 configureAsNonblocking(client2);

 bool client1StillSending = true;
 bool client2StillSending = true;
 while (client1StillSending || client2StillSending) {
 if (client1StillSending) {
 client1StillSending = receiveFromFd(client1, "CLIENT 1");
 if (!client1StillSending) {
 close(client1StillSending);
 }
 }
 if (client2StillSending) {
 client2StillSending = receiveFromFd(client2, "CLIENT 2");
 if (!client1StillSending) {
 close(client1StillSending);
 }
 }
 }
 cout << "Connections closed" << endl;
}

This loop doesn’t block…
… at all…
… even when there is no data to process

epoll: wait until a file descriptor is ready

● The epoll API allows us to register a set of file descriptors to watch

● epoll_wait puts us to sleep until a file descriptor is ready for reading/writing

○ Not unlike assignment 4: sigwait() to wait until there is an update with a
child process, then call waitpid() with WNOHANG in a loop to get all the
updates

○ Here: epoll_wait() to wait until there is new data coming in on a file
descriptor. Then read() with O_NONBLOCK to get all the received data

https://man7.org/linux/man-pages/man7/epoll.7.html

static void receiveTwoConnections(int client1, int client2) {
 cout << "Printing from two incoming connections" << endl;

 configureAsNonblocking(client1);
 configureAsNonblocking(client2);

 int epollFd = epoll_create1(0);
 addToWatchSet(epollFd, client1);
 addToWatchSet(epollFd, client2);

 size_t numConnections = 2;
 while (numConnections > 0) {
 struct epoll_event event;
 epoll_wait(epollFd, &event, 1, -1);
 const char *clientName = event.data.fd == client1 ? "CLIENT 1" : "CLIENT 2";
 bool clientStillSending = receiveFromFd(event.data.fd, clientName);
 if (!clientStillSending) {
 removeFromWatchSet(epollFd, event.data.fd);
 close(event.data.fd);
 numConnections--;
 cout << clientName << " closed" << endl;
 }
 }
 cout << "All connections closed" << endl;

 close(epollFd);
}

static void addToWatchSet(int epollFd, int fd) {
 struct epoll_event event;
 event.events = EPOLLIN | EPOLLET;
 event.data.fd = fd;
 epoll_ctl(epollFd, EPOLL_CTL_ADD, fd, &event);
}

Create set of file
descriptors we want to
watch

static void removeFromWatchSet(int epollFd, int fd) {
 epoll_ctl(epollFd, EPOLL_CTL_DEL, fd, NULL);
}

event.data is an epoll_data union that allows us to
store 8 bytes of data, which will be returned to us
by epoll_wait when this fd is ready for reading

typedef union epoll_data {
 void *ptr;
 int fd;
 uint32_t u32;
 uint64_t u64;
} epoll_data_t;

event.data.fd now has the fd
number that is ready for reading

^ now receive all the data that client sent

Fully asynchronous I/O

● epoll can be used with any number of file descriptors, of any type
int main(int argc, char *argv[]) {
 int waitingListFd = createServerSocket(12345);
 if (waitingListFd == -1) {
 cerr << "Failed to bind to port 12345" << endl;
 return 1;
 }

 configureAsNonblocking(waitingListFd);

 int epollFd = epoll_create1(0);
 addToWatchSet(epollFd, waitingListFd);

 while (true) {
 struct epoll_event event;
 epoll_wait(epollFd, &event, 1, -1);
 if (event.data.fd == waitingListFd) {
 acceptSomeClients(epollFd, event.data.fd);
 } else {
 receiveFromClient(epollFd, event.data.fd);
 }
 }
 return 0;
}

static void acceptSomeClients(int epollFd, int waitingListFd) {
 while (true) {
 int clientFd = accept(waitingListFd, NULL, NULL);
 if (clientFd == -1) {
 // Let's assume for this example that this is because
 // EAGAIN/EWOULDBLOCK
 break;
 }
 cout << "Received new connection! Client fd " << clientFd << endl;
 configureAsNonblocking(clientFd);
 addToWatchSet(epollFd, clientFd);
 }
}

Commonly called the event loop:
Waits for something to happen, then
does something quick in response.
No threading, no blocking!

● We could add other types of file descriptors
and other actions to the event loop, e.g.
responding to keyboard input on stdin,
responding to a signal, etc.

New benefits

● With only one thread, context switching overhead is eliminated

● Overhead of each connection is miniscule

○ We don’t need to create a whole stack every time we want to support a
new connection

● This model can easily support 10k+ simultaneous connections with just a
single thread

○ In fact, this is your only practical option for applications looking to support

10-100k+ concurrent connections. Standard for HTTP servers nowadays

○ Another example: scanning the internet (see guest talk next Wednesday!)

The dark side of epoll

The dark side of epoll

● State management is hard. Real world applications get very messy, very
quickly

● Asynchronous I/O interfaces are usually platform-specific

○ epoll is Linux only. Mac and other BSD derivatives have kqueue, Solaris

has /dev/poll, Windows has I/O completion ports

● There are so many small details that need to be perfectly correct in order for

async I/O applications to work correctly

State management is hard

● Our sample asynchronous I/O server is pretty simple…

○ because it does almost nothing useful

○ Key point: it maintains almost no state per connection. Just prints out whatever incoming data is

received

● Real life is much more complicated. When an fd is ready, what are we supposed to do with it?

● Painful code: https://web.archive.org/web/20120504033548/https://banu.com/blog/2/how-to-use-epoll-

a-complete-example-in-c/

● Actual applications:

○ The client just sent me the last part of an HTTP request. What were all of the earlier parts of the
request it sent me before?

○ Was I waiting for the client to send me something, or was I in the middle of sending something to
the client?

○ Alice the Client asked me for her emails, but I needed to get them from Bob the Database. Now
Bob the Database responded with some info, but I can’t remember what I was supposed to do with
it

https://web.archive.org/web/20120504033548/https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/
https://web.archive.org/web/20120504033548/https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/
https://web.archive.org/web/20120504033548/https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/

State management with threads: Solved by the stack

● When an event happens (e.g. data comes in), how do we remember what we
were in the middle of doing? How do we remember previous data?

○ Multithreading: the saved %rip register tells us what we were doing

○ the thread’s stack stores any previous data we still need

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

main:
sockbuf sb
iosockstream ss

handleRequest:
iosockstream &ss

static void getEmail(size_t emailId) {
 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

%rip 👀

State management with threads: Solved by the stack

● When an event happens (e.g. data comes in), how do we remember what we
were in the middle of doing? How do we remember previous data?

○ Multithreading: the saved %rip register tells us what we were doing

○ the thread’s stack stores any previous data we still need

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

main:
sockbuf sb
iosockstream ss

handleRequest:
iosockstream &ss
Request request

static void getEmail(size_t emailId) {
 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

%rip 👀

State management with threads: Solved by the stack

● When an event happens (e.g. data comes in), how do we remember what we
were in the middle of doing? How do we remember previous data?

○ Multithreading: the saved %rip register tells us what we were doing

○ the thread’s stack stores any previous data we still need

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

main:
sockbuf sb
iosockstream ss

handleRequest:
iosockstream &ss
Request request
size_t emailIdstatic void getEmail(size_t emailId) {

 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

%rip 👀

State management with threads: Solved by the stack

● When an event happens (e.g. data comes in), how do we remember what we
were in the middle of doing? How do we remember previous data?

○ Multithreading: the saved %rip register tells us what we were doing

○ the thread’s stack stores any previous data we still need

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

main:
sockbuf sb
iosockstream ss

handleRequest:
iosockstream &ss
Request request
size_t emailId

getEmail:
size_t emailId

static void getEmail(size_t emailId) {
 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

%rip 👀

State management with threads: Solved by the stack

● When an event happens (e.g. data comes in), how do we remember what we
were in the middle of doing? How do we remember previous data?

○ Multithreading: the saved %rip register tells us what we were doing

○ the thread’s stack stores any previous data we still need

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

main:
sockbuf sb
iosockstream ss

handleRequest:
iosockstream &ss
Request request
size_t emailId

getEmail:
size_t emailId
Connection conn

static void getEmail(size_t emailId) {
 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

%rip 👀

If we block on querying the email, the stack still stores
all context we need to eventually send this email back
to the client

State management with AIO: what to do?

● Somehow need to store a snapshot of everything that is happening right now and what needs to
happen next

● State machines (CS 103):

○ Define each state we can be waiting in

○ Define transitions, driven by something that happens (e.g. new data comes in)

Waiting for request:
iosockstream ss
vector<char> receivedSoFar

Waiting for email:
iosockstream ss
size_t emailId

static void handleRequest(iosockstream &ss) {
 Request request = readRequest(ss);
 size_t emailId = parseRequestedEmailId(request);
 Email email = getEmail(emailId);
 sendEmail(ss, email);
}

static void getEmail(size_t emailId) {
 Connection conn = openDatabaseConnection();
 return conn.queryEmail(emailId);
}

Sending response:
iosockstream ss
Email email

Done!

Full request received

Partial
request

received

Email fetched from db
Full response sent

Response
partially sent

State management with AIO: what to do?

● State machine for implementing HTTP client:

https://www.w3.org/Library/User/Architecture/HTTPFeatures.html

State management with AIO: what to do?

● When something happens on a file descriptor, we can get the state machine
associated with that file descriptor, see what state it’s in, and follow the state
transition associated with whatever just happened (e.g. incoming data)

● Manually specifying/implementing state machines is still really hard and
complicated… But it’s a lot better than nothing

AIO interfaces are generally platform-specific

● epoll is Linux only. Mac and other BSD derivatives have kqueue, Solaris has /
dev/poll, Windows has I/O completion ports

● Each of these has totally different semantics for the small (but important)
details

● How to implement portable async programs??

AIO: The devil is in the details 😈

● Epoll, and IO interfaces in general, are extremely hard to use correctly. Many small details need to
be just perfect

● Small selection of problems:

○ Fairness/starvation: if we keep getting a massive amount of data coming in on one fd, that is

likely to prevent us from processing data on other fds

○ With multiprocessing/multithreading: Thundering herd problem: “a large number of processes

or threads waiting for an event are awoken when that event occurs, but only one process is
able to handle the event. When the processes wake up, they will each try to handle the event,
but only one will win. All processes will compete for resources, possibly freezing the computer,
until the herd is calmed down again.”

● Further reading:

○ https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/

○ https://blog.cloudflare.com/the-sad-state-of-linux-socket-balancing/

https://en.wikipedia.org/wiki/Thundering_herd_problem
https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/
https://blog.cloudflare.com/the-sad-state-of-linux-socket-balancing/

Better solutions: Better abstractions

Better abstractions

● Key point: we need simpler abstractions so you can focus on solving your
problem without having to think about all the details of async I/O

● Over the years, people have developed a few ways to cope

● Most promising idea (“coroutines”/“async/await”):

○ Write code that looks almost like normal threaded code

○ The compiler or interpreter will compile your code into a state machine

(“promise” or “future”)

○ Submit the promise/future to the event loop (“executor”) and the runtime

will take care of all the messy business

Better abstractions

● Example (Rust):
async fn addToInbox(email_id: u64, recipient_id: u64)
 -> Result<(), Error>
{
 let message = loadMessage(email_id).await?;
 let recipient = get_recipient(recipient_id).await?;
 recipient.verifyHasSpace(&message)?;
 recipient.addToInbox(message).await
}

async function addToInbox(email_id, recipient_id) {
 let message = await loadMessage(email_id);
 let recipient = await get_recipient(recipient_id);
 recipient.verifyHasSpace(message);
 await recipient.addToInbox(message);
}

● Javascript:

● C++20 finally got coroutines, but they aren’t very usable yet. Maybe wait another 2 years 
Relevant: https://www.scs.stanford.edu/~dm/blog/c++-coroutines.html

https://www.scs.stanford.edu/~dm/blog/c++-coroutines.html

Takeaways

Takeaways

● Async I/O is a must for extremely high concurrency

● Not useful for CPU-bound work, when you’re using the time slice and have

less concurrency

● Avoid manual nonblocking + epoll if at all possible. Use stackless coroutines/

promises/futures if possible

● If you need to use it, take the time to explore the many pitfalls first

