
Project 1 Walkthrough

CS110L

February 7, 2022

Getting set up

● Please accept your repo invitations now (before they expire)!!!

● Working together:

● You can work individually or in groups of 2-3

● Working in groups: you can submit together or separately

● See instructions on project 1 handout and collaboration tools tips.

● Submit on GitHub.

● Getting a Linux setup:

● Unfortunately, the process interface we use is specific to Linux.

● Myth machines seem to work. More options for getting a Linux setup on

your own machine are on the website.

● This is the last assignment where you’ll need Linux!

Milestone 0:

Check Out the Starter Code

Starter code

main.rs
Entry-point
for the
program

debugger.rs
The `Debugger` struct

- has an “inferior”

- later: has “debug

symbols”

new: initialize

run: loop to read
debugger_commands
from user and execute
them.

Creates  
and “runs”  

a Debugger
object

debugger_command.rs
Enum for commands

(Run, quit, continue, etc.)

Parse strings from user

inferior.rs
The “process being
debugged” struct

- wraps a “child” (process)

- later: breakpoints

Some methods: `new`, `wait`
(waitpid wrapper), etc.

You’ll add stuff here!

Milestone 1:

Start the “Inferior” as a Child Process

Milestone 1: start the “inferior” as a child process
fn main() {

 // parse args from user -> get `target` to debug

 let mut debugger = Debugger::new(target);

 debugger.run();

}

Milestone 1: start the “inferior” as a child process
fn main() {

 // parse args from user -> get `target` to debug

 let mut debugger = Debugger::new(target);

 debugger.run();

}

loop {

 match self.get_next_command() {

 DebuggerCommand::Run(args) => {

 // do something

 }

 DebuggerCommand::Quit => {

 // do something else

 }

 }

}

LOOP:

- Read command from

user (e.g., “run” or “quit”)

- Execute the command

Milestone 1: start the “inferior” as a child process
DebuggerCommand::Run(args) => {

 // TODO (milestone 1): implement Inferior::new

 if let Some(inferior) = Inferior::new(&self.target, &args) {

 self.inferior = Some(inferior);

 // TODO (milestone 1): make the inferior run

 } else {

 println!("Error starting subprocess");

}

● What this code does now: when a user enters “run”, calls a dummy function
that returns an Option<Inferior>. If that Option is Some, stores the
encapsulated `inferior` in the Debugger struct. Else, prints an error.

Milestone 1: start the “inferior” as a child process

● Inferior::new should start a new inferior process:

● Construct a Command::new with the given target and args

● Set the pre_exec function to be child_traceme

● This calls the ptrace system call with PTRACE_TRACEME
● Enables debugging on the child process from the parent process

● Wait for the child process to successfully start and stop

● Any process started with PTRACE_TRACEME will “stop” with a

SIGTRAP as soon as it starts

● Verify that the child process has, in fact, stopped with SIGTRAP

● If Inferior::new returns successfully, continue the process and wait for it to stop
or exit.

Milestone 3:

Print a Backtrace

Skipping overview of Milestone 2, which involves
implementing `cont` and (I recommend) some

decomposition of your code from part 1.

Milestone 3: implementing a backtrace

● Background: compiling a program

● When a program is compiled, its executable instructions end up in the

text segment of a process. (In other words, instructions are stored in
memory, and they have memory addresses — just like normal variables.)

● Instruction addresses are stored in the %rip (instruction pointer)
register as they are executed.

● When a program is compiled for debug mode, extra debugging symbols are
stored within the executable.

● These help map memory addresses to functions, line numbers, file

names, variables, and more.

● One more piece of starter code: dwarf_data.rs

● Wrapper around the DWARF debugging format and the gimli library

● Implements a struct DwarfData:

● Contains debug symbols (mappings) generated from a target file.

● Has some helpful functions, e.g.:

● get_line_from_addr(&self, curr_addr: u64): given the memory
address of an instruction, returns the file and line number it
corresponds to in source code.

● get_function_from_addr(&self, curr_addr: u64): given the memory
address of an instruction, returns the name of the function it’s in.

Milestone 3: implementing a backtrace

https://docs.rs/gimli/latest/gimli/

● Putting it all together…

● You can use ptrace::getregs to get all registers in the “traced” process (the

process you’re debugging)

● You can get the value in the instruction pointer (%rip)

● You can pass that value into DwarfData’s mappings, which will give you

source code level information to print!

Milestone 3: implementing a backtrace

● To turn this into a full backtrace, we need to “travel up the stack”:

Milestone 3: implementing a backtrace

Milestone 3: implementing a backtrace

● func2 was called by
func1, so return address
at top of func2’s stack
frame will take us to
func1

● func1 was called by
main, so return address
at top of func1’s stack
frame will take us to main

● Once we hit main, break.

Milestones 5, 6, and 7:

Setting Breakpoints

Skipping overview of Milestone 4, which involves
applying the same concepts as milestone 3.

Milestone 5: Breakpoints on Memory Addresses

● Add a break command.

● For now, this should take one argument: a memory address.

● (e.g., break *0x123456)

● If breakpoints are set before the process is running, store them in the

Debugger, and pass them to Inferior::new when the user runs the inferior.

● In Inferior::new, install the breakpoints.

● How?

Background: Installing Breakpoints

● The executable instructions of a program are stored in a read-only segment of
a process’ virtual memory called the text segment.

● Instructions are just values written to memory.

● Every instruction has a memory address and a size.

● Machine-encoded instructions are represented as one or more bytes

● Ex: push = 0x55, mov = 0x89, ret = 0xc3

● These “codes” are what’s actually stored in the text segment of a

process — what the CPU reads and interprets as instructions.

● %rip, the instruction pointer, stores the memory address of the “next

instruction to execute”.

Milestone 5: Breakpoints on Memory Addresses

mov %esp, %ebp

sub $4,%esp

push %edi
0x123456

How breakpoints work in gdb:

● Manually replace the instruction you want to break at with the “interrupt”

instruction (0xcc).

● E.g.: if you want to set a breakpoint on the instruction stored at 0x123456, use

ptrace to write the byte 0xcc to 0x123456 in the child process.

● When the child process gets to the interrupt instruction (%rip => 0x123456), it

will temporarily halt. Parent can examine using waitpid.

mov %esp, %ebp

INTERRUPT $4,%esp

push %edi
0x123456

Summary:

● There should be a break enum variant in DebuggerCommand.

● When triggered in run loop: parse a valid memory address provided for the

breakpoint.

● If the inferior has already started running, install the breakpoint.

● Otherwise, store it in the Debugger to be installed later.

● When inferior is created, install all stored breakpoints (if any).

● To install a breakpoint at location X: write_byte 0xcc to location X

● Optionally, print a confirmation message

● Note: for testing, add a call to `debug_data.print()` in Debugger::new to print

out debug symbols (e.g., memory addresses <-> line numbers).

Milestone 5: Breakpoints on Memory Addresses

Milestone 6: Continuing from a Breakpoint

● Problem: to set a breakpoint, we overwrote the first byte of a valid
instruction in the program. If we continue, this could cause… issues.

● To continue from a breakpoint:

● Replace 0xcc with the original instruction’s value (note: you’ll probably

need to have this stored when breakpoints are set)

● Rewind the instruction pointer in %rip to before the breakpoint (set %rip

to %rip - 1)

● Execute that instruction: tell ptrace to continue by just one instruction

● Restore the breakpoint: replace the instruction with 0xcc again

● Resume normal execution

Milestone 6: Continuing from a Breakpoint

mov

%esp,

%ebp

sub

$4,

%esp

push

%edi

mov

%esp,

%ebp

INTERRUPT

$4

%esp

push

%edi

0x123453

0x123454

0x123455

0x123456

0x123457

0x123458

0x123459

0x123460

0x123453

0x123454

0x123455

0x123456

0x123457

0x123458

0x123459

0x123460

%rip

%rip

1. Breakpoint hit,  
instruction pointer incremented

2. Restore original first byte of instruction

mov

%esp,

%ebp

sub

$4,

%esp

push

%edi

0x123453

0x123454

0x123455

0x123456

0x123457

0x123458

0x123459

0x123460

%rip

3. “Roll back” instruction pointer

to beginning of true instruction

Milestone 6: Continuing from a Breakpoint
4. Execute a single instruction

mov

%esp,

%ebp

sub

$4,

%esp

push

%edi

0x123453

0x123454

0x123455

0x123456

0x123457

0x123458

0x123459

0x123460

%rip
5. Restore the breakpoint

mov

%esp,

%ebp

INTERRUPT

$4,

%esp

push

%edi

0x123453

0x123454

0x123455

0x123456

0x123457

0x123458

0x123459

0x123460

%rip

6. Continue normal execution

Milestone 7: Setting Breakpoints on Symbols

● Apply what you know about
DwarfData from milestone 3 to
allow users to break on
functions or line numbers!

● I.e.: translate line number or
function name to an address,
then call your code from
milestones 5/6.

Aside: a few tips

● Error handling:

● The `?` operator is really useful for propagating errors. (Notes here.)

● The `Result::ok()` method is useful for converting Results to Options.

(Notes in the week 3 exercises here.)

● Possible example: let child = command.spawn().ok()?;

● Read documentation

● We’re using the `nix` library — interface for libc functions like waitpid

and ptrace. If you’re using these, make sure you know what parameters
these take in and what types they return.

A few tips

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-05/#the--operator
https://web.stanford.edu/class/cs110l/assignments/week-3-exercises/

● `pub` structs, members of structs, enums, functions, etc.

● Pub = “this interface is accessible from outside of this module”

● Default = “no one outside of this module can invoke this interface”

● E.g., if you want a function in `inferior.rs` to be callable from debugger.rs,

mark it as `pub`. If you make a helper function in inferior.rs that’s only
used internally, don’t make it `pub`.

● Use keyword:

● You may have to import items from other modules/crats to use them

● Ex: to use Command, you’ll need use std::process::Command

● These are noted on the handout. If you get a “cannot find X in this

scope” error, make sure you’ve imported what you need.

A few tips

https://doc.rust-lang.org/reference/visibility-and-privacy.html?highlight=pub#visibility-and-privacy
https://fasterthanli.me/articles/rust-modules-vs-files
https://doc.rust-lang.org/std/keyword.use.html#:~:text=Keyword%20use&text=Import%20or%20rename%20items%20from,functions,%20usually%20at%20the%20top.

● Option::as_ref and Option::as_mut
● Talked about as_ref in lecture 6
● Both as_ref and as_mut are in the lecture 7 notes

● as_ref converts &Option<T> -> Option<&T>

● as_mut is the same as as_ref, but with mutable references.

● Docs here

● Example usage, in Debugger::run:

A few tips

DebuggerCommand::Run(args) => {

 if let Some(inferior) = Inferior::new(&self.target, &args) {

 self.inferior = Some(inferior);

 let inf = self.inferior.as_mut().unwrap();

/// ...

Note: some compiler magic happening here.

self.inferior.as_mut().unwrap();

in this code snippet is expanded into

(&self.inferior).as_mut().unwrap()

https://web.stanford.edu/class/cs110l/lecture-notes/lecture-06/
https://web.stanford.edu/class/cs110l/lecture-notes/lecture-07/
https://doc.rust-lang.org/nightly/core/option/enum.Option.html#method.as_ref

A few tips

● Get comfortable with
`enums` and `match`
expressions.

● Example:

pub enum Status {

 /// Indicates inferior stopped.

 /// Contains the signal that stopped the

 /// process, as well as the current

 /// instruction pointer it is stopped at.

 Stopped(signal::Signal, u64),

 /// Indicates inferior exited normally.

 /// Contains the exit status code.

 Exited(i32),

 /// Indicates the inferior exited due to a

 /// signal. Contains the signal that

 /// killed the process.

 Signaled(signal::Signal),

}

● Match expression example #1:

match status {

 Status::Stopped(signal::SIGTRAP, _) => {}

 _ => return None,

}

If `status` is of type
Status::Stopped *and*

the encapsulated
`signal` is of type

`signal::SIGTRAP`, do
nothing In all other situations

(default option), return
None.

A few tips

● Match expression example #2:

match status {

 Status::Stopped(sig, _) => {

 // do something, possibly involving `sig`

 }

 Status::Exited(stat) => {

 // do something, possibly involving `status`

 }

 // etc.

}

If the `status` is of type Status::Stopped

- Capture the `sig` (Signal)
encapsulated in the Status

If the `status` is of type
Status::Exited

- Capture the exit status code
encapsulated

A few tips

That’s it!

Feel free to implement any additional functionality that interests you :)
E.g.: “next” command, print source code, print variables…

