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Prof. Audrey K Bowden 

▪ Dorothy J. Wingfield Phillips Chancellor Faculty Fellow and Associate 
Professor of Biomedical Engineering (BME) and of Electrical 
Engineering (EE) at Vanderbilt University

▪ Prior to this, she served as Assistant and later Associate Professor 
of Electrical Engineering and Bioengineering at Stanford University. 

▪ Research Focus

▪ Biophotonics (light-based) tools for applications to medicine and biology, 
such as for early detection, diagnosis and therapy for cancer;

▪ Development and deployment of low-cost, high-performing point-of-care 
technologies for rural and global health applications
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IMAGING IN MEDICINE
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Imaging

▪ Everyone knows about cameras…

▪ What else might you be interested in “imaging”?
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Medical Imaging ca. 1895

I don’t feel good…

Let’s cut you 

open…

Need to find a way to see inside without “light”
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X-Ray

• November 8th, 1895, German scientist Wilhelm 
Roentgen was  conducting experiments in his 
laboratory on the effects of cathode rays. 

• the effect of passing an electrical discharge     
through gases at a low pressure. 

• when passing current through the cathode ray, 
rays are given off that passed through different 
materials. 

he name it  X-RAYS

X meaning unknown

electromagnetic radiation of 

short wavelength produced when 

high-speed electrons strike a 

solid target 
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Medical Imaging Today
X-Ray CT

MRI Ultrasound

All of these were enabled/dramatically advanced 

by the mathematical and hardware design 

techniques you will learn here!
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Imaging In General

Energy 
source Subject

Energy 

detection

Imaging System

(electronics, control, computing, algorithms, 

visualization, …)
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Conventional X-ray Imaging.
X-ray Production.

Electrons from cathode

filament are accelerated

towards and impact the

rotating anode.

Rapid deceleration

produces heat (~ 98%)

and x-rays (~2%)

High Electrical Potential

Electrons

-+

Exposure Recording Device

Radiation 

Penetrate 

the Sample
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Over couch X-ray Tube and Table

High Tension

Cables

X-ray Tube housing

Controls

Light Beam Diaphragm

Table, and cassette holder
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Conventional X-ray Image of a Hand

Normal Arthritic
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Chest X-ray
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Computerized Tomography (CT)

combines special x-ray equipment with sophisticated computers to

produce multiple images of the inside of the body.

Brain Axial Image

CT Scanner
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Computed Tomography (CT)

Rotation gives

multiple projections

Array of detectors

(rare-earth doped ceramics

with photodiodes)

X-ray

tube

Thin fan beam

of x-rays

Patient

(stationary)
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• moving body structures

• A continuous x-ray beam is passed through the body part and

is transmitted to a monitor

Fluoroscopy

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 18



X-RAY

TUBE

IMAGE

INTENSIFIER

TV CAMERA

OR

CCD ARRAY

(for digital screening)

CONTROLS
Allows dynamic imaging of 

blood vessels (angiography)

and ‘interventional’ procedures

Fluoroscopy
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Gamma camera head

Radioisotope Imaging, Nuclear medicine (NM)

• the formation of images provides information about the function of various 

organs in the body, 

• using internally administered radioisotopes as a radiation source. 

• locate tumors or cancers and to examine the flow patterns of body fluids.
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Gamma Camera Scan

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 21



Positron Emission Tomography (PET)

Radioisotope Imaging

• a nuclear medicine imaging technique

• produces a 3D images of functional processes in the body

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 22
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Radioisotope Imaging

• a nuclear medicine tomographic imaging technique using gamma rays

• similar to conventional nuclear medicine planar imaging using a

gamma camera.

• Able to provide true 3D information.

Single Photon Emission Computed Tomography (SPECT)

“Dead” areas of brain

No glucose metabolism

Human Brain - Stroke
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• common diagnostic medical procedure that uses 

high-frequency sound waves to produce images 

sonograms) of organs, tissues, or blood flow inside 

the body. 

• involves using a transducer, which sends 

• a stream  of high-frequency sound waves into 

the body 

• and detects their echoes as they bounce off 

internal structures. 

• The sound waves  are then converted to electric 

impulses.

Ultrasound Imaging (US)

Ultrasound Transducer 
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Ultrasound Image of 19 Week Old Foetus

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 25



3D Ultrasound
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Magnetic Resonance Imaging (MRI)

Big superconducting

magnet (~ 1.5 tesla).

Gradient coils.

Radiofrequency coils.

• uses a powerful magnetic field, radio frequency pulses, and a computer

• produce detailed pictures of organs, soft tissues, and all other internal body 

structures. 
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T1-weighted T2-weighted Proton density

weighted

Axial Brain Images

Magnetic Resonance Imaging (MRI)
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Safety

X-ray imaging

Radioisotope scanning

Ultrasound Imaging

MRI

Ionising

Radiation

Non-ionising

Radiation

Biological effect

need protection against 

unnecessary doses }

}

Modality Radiation

Type

Comments

Less harmful effects.

Better for the foetus.
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NEUROIMAGING
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What is considered Neuroimaging?

Neuroimaging, or brain scanning, is a 
process of producing images of the brain 
or other parts of the nervous system. 
Current neuroimaging techniques are 
typically able to show both the structure 
and the functions of the brain.
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Neuroimaging types/modalities

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)

Neuroimaging 
Techniques

computed 
tomography 
(CT)

magnetic 
resonance 
imaging (MRI)

functional 
MRI (fMRI)

positron 
emission 
tomography 
(PET)

• Series of x-ray images of the head

• Relatively low resolution

• Can see major structural changes

• Uses magnetic fields and 

radiofrequency energy

• Better spatial resolution 

• Can see more structural details

• Uses different responses of 

oxygenated and unoxygenated blood 

to detect changes in blood flow

• Shows active regions (function)

• modern medicine

• neuroscience

• psychology

• Gives image of cerebral blood flow

• Shows which areas are most active

• A form of functional imaging

Diffusion Tensor 

Imaging (DTI)
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Goal

Identify biomedical phenotypes 

improving the mechanistic understanding, 

diagnosis, and treatment 

of neuropsychiatric disorders. 
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Acquire Brain MRIs

Anatomy Connectivity Function

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 34Slide courtesy of Kilian Pohl



Group Analysis: A Neuroscientific View

Inference is limited by prior assumptions  
Define Cohort

Extract a small 

number of 

measurements 

Hypothesis

Driven

Analysis

Group 

Differences

Easy to explain findings  

Zhao et al. Addiction Biology 2020
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Identifying Disease Specific Markers

Extract a small 

number of 

measurements 

Hypothesis

Driven

Analysis

Data Set I

Data Set N

…

Increase size and heterogeneity of data set

Increase accuracy in characterizing cohort

Difficult to interpret findings 

Extract many 

measurements 

Machine 

Learning

Label Subject
Disease

Healthy
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Identifying Disease Specific Markers

Extract a small 

number of 

measurements 

Hypothesis

Driven

Analysis

Group 

Differences

Data Set I

Data Set N

… Extract many 

measurements 

Machine 

Learning

Label Subject
Disease

Healthy

Identify 

Patterns

Increase size and heterogeneity of data set

Increase accuracy in characterizing cohort

Identify patterns through data-driven search

Adeli et al. Biological Psychiatry: CNNI 2019

Zhang et al. Human Brain Mapping 2016
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Identifying Disease Specific Markers

Extract a small 

number of 

measurements 

Hypothesis

Driven

Analysis

Group 

Differences

Data Set I

Data Set N

… Extract many 

measurements 

Machine 

Learning

Label Subject
Disease

Healthy

Identify 

Patterns

Problem: Accuracy of analysis depends on a prior defined 

measurements 

Extract many 

measurements 

Remove Bias and 

Confounding 

Effects
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Identifying Disease Specific Markers

Group 

Differences

Data Set I

Data Set N

… End-to-End 

Deep Learning

Label Subject
Disease

Healthy

Identify 

Patterns

Remove Bias 

and 

Confounding 

Effects

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 39Slide courtesy of Kilian Pohl



VIDEO
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Rating the motor impairments severity 

41

[1] Goetz et al. Movement disorders 2008

Movement Disorder Society Unified Parkinson's 

Disease Rating Scale (MDS-UPDRS) [1]

MDS-UPDRS

Gait Score:

0

1

2

3

4

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)
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(+) Entirely vision-based method

(+) Non-intrusive video recordings

(+) Scalable

MDS-UPDRS

Gait Score

Sequence of 3D 

skeletons 

(pose)

(+) Low-dimensionality data

(+) Efficient in required number of samples

(+) Anonymized data

Estimate

Lu et al., MICCAI 2020

Rating the motor impairments severity 

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)



Original Video 

Overlayed 3D Mesh/Pose
Side View



Endowing healthcare spaces with ambient intelligence

Haque et al., Nature 2020, Illuminating the Dark Spaces of Healthcare with Ambient Intelligence

Yeung et al., New England Journal of Medicine 2018, Bedside Computer Vision — Moving Artificial Intelligence from Driver Assistance to Patient Safety

Luo and Hsieh et al., Machine Learning for Healthcare  2018, Computer Vision-based Descriptive Analytics of Seniors’ Daily Activities for Long-term Health Monitoring

Hospital spaces Daily living spaces

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)

Stanford Partnership in 
AI-Assisted Care (PAC)
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Hospital

Intensive Care 
Unit

Operating 
Rooms

Patient Rooms
Administrative 

Space

Daily Living 
Spaces

Senior Care
Chronic Disease 

Management
Mental Health Homes

Recognizing Activities in Videos from Contactless 

Sensors using Computer Vision Technology 

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) Alan Luo 45



Intervene to improve care and reduce costs

Early mobilization Fall detection

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 46



Surgical Phase Recognition - Cholecystectomy

47

Surgical Workflow

Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)

Tobias, et al. "Opera: Attention-

regularized transformers for surgical 

phase recognition." MICCAI 2021.

Slides Courtesy of

Tobias Czempiel, Magda Paschali



Surgical Phase Recognition - Cholecystectomy
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Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset
Surgical Workflow

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)



Surgical Phase Recognition - Cholecystectomy

49

Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset
Surgical Workflow
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Surgical Phase Recognition - Cholecystectomy
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Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset Surgical Workflow
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Surgical Phase Recognition - Cholecystectomy
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Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset
Surgical Workflow
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Surgical Phase Recognition - Cholecystectomy
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Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset
Surgical Workflow
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Surgical Phase Recognition - Cholecystectomy
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Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Slides Courtesy of Tobias Czempiel, Magda Paschali

Cholec80 dataset
Surgical Workflow
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Surgical Phase Recognition - Cholecystectomy
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Cholec80 dataset

Preparation

Calot Triangle Dissection

ClippingCutting

Gallbladder Dissection

Gallbladder Packaging

Cleaning Coagulation

Gallbladder Retraction

Surgical Workflow

Slides Courtesy of Tobias Czempiel, Magda PaschaliEhsan Adeli, Ph.D. (eadeli@stanford.edu)



Potentials & Challenges

55

Maier-Hein, L., Vedula, S. S., Speidel, S., Navab, N., Kikinis, R., Park, A., Eisenmann, M., Feussner, H., Forestier, G., Giannarou, S., Hashizume, M., Katic, D., Kenngott, H., Kranzfelder, M., Malpani, A., März, K., 

Neumuth, T., Padoy, N., Pugh, C., … Jannin, P. (2017). Surgical data science for next-generation interventions. Nature Biomedical Engineering, 1(9), 691–696. https://doi.org/10.1038/s41551-017-0132-7

Slides Courtesy of Tobias Czempiel, Magda Paschali

+ Early warnings when deviating from surgical plan

+ Context aware systems

+ Automatic archiving, surgical protocol

Ehsan Adeli, Ph.D. (eadeli@stanford.edu)



Potentials & Challenges
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- Variability of patient anatomy and surgeon style

- Limited available training data

- Strong similarities among different phases

Descriptive

Generic

+ Early warnings when deviating from surgical plan

+ Context aware systems

+ Automatic archiving, surgical protocol

Slides Courtesy of Tobias Czempiel, Magda PaschaliEhsan Adeli, Ph.D. (eadeli@stanford.edu)



Methods
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LabelPrediction
T
im

e

Surgical Video

Slides Courtesy of Tobias Czempiel, Magda Paschali

2D/3D CNN, ResNet

RNN

Transformers

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 57
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Endoscopy Videos

▪ Endoscopy and its organ-specific derivatives 
(e.g., laparoscopy, colonoscopy, cystoscopy) play 
a powerful role in diagnostic imaging, surgical 
guidance, and cancer surveillance.

▪ Rich information in endoscopy videos

▪ Cumbersome nature of post-session video 
review

▪ Results in condensing lengthy video data into a 
few still images and brief notes or drawings 
about the locations and appearance of 
suspicious lesions and scars.

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 59
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Motivation

▪ The availability of complete organ reconstructions for other medical imaging 
modalities has been of powerful effect, leading to clinical advances in areas such as 
intraveneous injection, sleep apenea evaluation, and cervical and gastric cancer

▪ a comprehensive representation of the endoscopy data that enables straightforward 
and rapid review of a single endoscopy session or comparisons across several could 
better support the clinical decision-making process and enable new directions for 
cancer research.

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 61



Framework 

▪ Develop comprehensive representations of cystoscopies, an important and clinically 
significant application,

▪ bladder cancer has the highest recurrence rate of all cancers and demands at least 
annual surveillance through cystoscopy to monitor recurrence (most expensive cancer 
to treat in patient’s lifetime).

▪ Three-dimensional reconstructions that can capture both the 3D organ shape and 
appearance can enable depiction of full organs and localization of individual regions 
to anatomical locations in the organ.

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 62



Challenges

1. The shape of the bladder is not known a priori; further, the bladder may change 
shape depending on its level of distension between imaging sessions.

2. While the shape of the bladder is important for orienting the physician, the surface 
appearance will be more carefully scrutinized by the physician than the exact shape. 

3. The endoscopic light source is part of the endoscope, which means the surface 
illumination is constantly changing.

4. Finally, a cystoscopic video has a duration of several minutes and covers a large 
surface area relative to the area viewed in a single frame. As a result, a feature does 
not remain in the field of view for a large percentage of the video, which is 
problematic given that the key to reconstruction is efficiently detecting when a 
feature re-enters the field of view in order to reconstruct an accurate model.

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 63



This paper

▪ First method for dense 3D reconstruction of the bladder from white light cystoscopy 
(WLC) videos that uses standard clinical hardware and introduces only a minor 
modification to the standard clinical scan pattern. 

▪ The four challenges are resolved by 

▪ (1) not utilizing any ground truth data to reconstruct the bladder surface, 

▪ (2) presenting a complete pipeline to convert the cystoscopic images into a 3D textured 
model of the bladder, 

▪ (3) developing an image preprocessing technique to remove lighting artifacts and thus 
strengthen feature matching, and 

▪ (4) utilizing a structure-from-motion algorithm that efficiently can detect loops. 
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Overview of the four-step 3D 
reconstruction algorithm

▪ SfM: Structure from motion 

▪ TEX: texture reconstruction

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 65



Reconstruction of tissue-
mimicking phantom datasets

▪ Top row (blue background): original semi-cylinder phantom; bottom 
row (orange background): modified semi-cylinder phantom. 

A. Standard digital camera images of the phantoms highlighting 
their shaped are compared with the

B. reconstructed mesh. 

C. Cross-sections of the expected mesh (dotted black line) and 
average reconstructed cross section (red) are compared. 

D. Standard digital camera images of the phantoms highlighting 
their surface appearance 

E. the reconstructed textured phantoms viewed from 
approximately the same camera angles. Black arrows are 
added to highlight similar features between the original and 
reconstructed images. Green boxes indicate regions of texture 
shown in greater detail in F

F. emphasize the seamlessness between regions composed of 
different images. The dotted white lines in (F) indicate 
boundaries between mesh faces that are composed of different 
original images.
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Reconstruction of clinical datasets

A. a representative, original WLC image, 

B. point cloud from the structure-from-motion 
step before outlier removal,

C. mesh from the mesh-generation step,

D. labeled texture (faces with the same color 
are labeled with the same input image)

E. textured mesh from texture-generation 
steps. The green box shows a similar region 
between subfigures indicating clear 
continuity of vessels despite the use of 
multiple input images to construct this 
region. The green box is approximately the 
size of a single WLC image. 

Black arrows in (A) and (F) indicate similar 
regions of the bladder.

Ehsan Adeli, Ph.D. (eadeli@stanford.edu) 67



Reconstruction of clinical datasets

A. anterior, 

B. posterior, 

C. left lateral, 

D. right lateral walls

Black circle and arrow in (C) show 
regions of a papillary tumor and 
scarring, respectively. Regions that 
appear dark represent the interior of 
the bladder.
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Conclusion

▪ The proposed algorithm can serve as the foundation for surgical planning, quality 
assessment of the procedure, optical annotation, and integration with other optical 
technologies.

▪ A longitudinal record of the bladder appearance can enable new quantitative studies 
of the time-varying appearance in the bladder wall (for example, to predict the 
location of early tumors or to stratify patient outcomes).

▪ The reconstructions presented in this work are based on rigid cystoscopies, but the 
proposed method is extendable to flexible cystoscopes. 

▪ Importantly, the shape-agnostic nature of the algorithm may make it extendable to 
reconstructions of other organs using their respective endoscopy derivatives.
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Thank You!

Ehsan Adeli
https://stanford.edu/~eadeli/

@eadeli
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Questions? 




