Oblique: Accelerating
Page Loads Using e
Symbolic Execution pro

d.' il
nS I 2' James Mickens

Harvard University

Why I’'m Interested in Load Time Optimization

Internet speed test

THIS HAPPENED TO ME
LAST NIGHT

@\ @\ 1y, v
\/ N S

(“Sheraton Palo-Altc

,

did
not
O . OO complete

Megabits per second

Vg

0 O ™

Testing upload...

2.34

Mbps download Mbps upload

Sheraton Palo Alto Hotel

Website Directions Save

Outline

How A Browser Loads a Web Page
Impediments to Optimization

Oblique

What | Learned While Working On Oblique

How Does A Browser Load a Page?

<html>
<head>
<title>Hil!</title>
<link rel=“stylesheet”
href=“style.css”>
<script src=“foo0.js”/>
</head>

<body>
<div>

<p>Some content</p>

</div>
</body>

User phone </html> Web server

How Does A Browser Load a Page?

e [he HTML contains tags that reference
external objects

o TJo fully load the page, the browser must
fetch all of these external objects!

<CSS>
<script>

User phone <script> Web server

How Does A Browser Load a Page?

e [he HTML contains tags that reference
external objects

o TJo fully load the page, the browser must
fetch all of these external objects!

<CSS>
<script>

<script>

GET http://foo.com/c.css

css §

User phone Web server

How Does A Browser Load a Page?

User phone

<CSS>
<script>

<script>

Web server

How Does A Browser Load a Page?
/lf cookie.loggedIn){
fetch(“http://foo.com/” +
cookie.userld + “.jpg”);
telse{
JS fetch(“http://foo.com/defaultAvatar.jpg”);

[IF-BODY TAKEN]
GET http://foo.com/42.jpg

<script>

<script>

User phone Web server

How Does A Browser Load a Page?
—if(cookie.loggedIn){
S— fetch(“http://foo.com/” +
CSS cookie.userld + “.jpg”);
telse{
fetch(“http://foo.com/defaultAvatar.jpg”);

[ELSE-BODY TAKEN]

<CSS>
<script>

<script>

GET http:/[foo.com/defaultAvatar.jpg

User phone Web server

How Does A Browser Load a Page?

<CSS>
<script>

Universe 1

. ® Some objects to fetch are

<ScCript> statically known, given the HTML

® The if/else JS statement created
two different universes because of
dynamic content resolution

® Branches may check personalized
state like a cookie!

® Some dynamically-selected

<CSS> | content may be personalized!

Sepee Universe 2

<script>

if(cookie.loggedIn){
fetch(“http://foo.com/” +
cookie.userld + “.jpg”);

A single page load may
be associated with many
potential universes for

each user!

telse{
fetch(“http://foo.com/defaultAvatar.jpg”);
}

if((userAgent == “Chrome Mobile”) ||
(userAgent == “Safari i0S”)){
fetch(“http://foo.com/Android.js”);
fetch(...);

lelse{
fetch(“http://foo.com/default.js”);
fetch(...);

}

<css> <css> <css>
<script> <script> <script> <script>
 . "
<script> <script> N <script> 3 <script>

/E‘I'ALI.IC

/ 7

if(cookie.loggedin){
fetch(“http://foo.com/” +
cookie.userld + “.jpg”);
lelse{
fetch(“http://foo.com/defaultAvatar.jpg”)
}

A single page load may
be associated with many
potential universes for

each user!

if((userAgent == “Chrome Mobile”) ||
(userAgent == “Safari i0OS”)){
fetch(“http://foo.com/Android.js");
fetch(...);

lelse{
fetch(“http://foo.com/default.js”);
fetch(...);

}

<Css> <css>
<script> <script> <script> <script>

 . »
- - - (-
<script> <script> . <script> <script>

Outline

How A Browser Loads a Web Page
Impediments to Optimization

Oblique

What | Learned While Working On Oblique

Two Problematic Trends in Web Traffic

e Mobile traffic is growing (> 50%) Headless
o Many mobile users (particularly in . browser Low-latency
emerging markets) stuck behind) peth
high-latency 3G/4G links v
o Even 5G links often suffer from 4G

latencies — s —
o Latency, not bandwidth, often Y

determines page load times! Y

e T[raffic is shifting to HTTPS (> 90%) plr"iﬁre Third-party Fir%t-partv
, proxy web server
o The Crypto IS Cheap I High-latency [Loads requested page,
o ...but how can we accelerate path p”j',;je;c‘t"s's,i‘s’)’\f,rfd
encrypted mobile traffic while
preserving confidentiality and Remote Dependency Resolution

ntegrity? (e.g., Amazon Silk, Parcel)

Two Problematic Trends in Web Traffic

Headless
. & browser Low-latency

Enables outsourcing of web)P path
acceleration E A

Breaks end-to-end TLS — - —

security: cleartext user -
data (e'g" COOKIes and User Third-party First-party
User-Agent string) are phone proxy web server
exposed to third part High-Tatency UG iccovered

p p y path objects ASAP]

Remote Dependency Resolution
(e.g., Amazon Silk, Parcel)

Two Problematic Trends in Web Traffic |

First-party offline & jaa®
analysis server \

Doesn't expose cleartext o o

. oads page multiple
TLS data to third-party times, identifies the
o rig'ns stable set URLs

Analysis must be run by
the first party: outsourcing

would break TLS security gf:;gg{;,'f:;;':,“z";ush

to prewarm client
cache
e ———————————

User First-party
phone web server

Vroom (SIGCOMM 2017)

Outline

How A Browser Loads a Web Page
Impediments to Optimization

Oblique

What | Learned While Working On Oblique

Oblique: The Big Idea™

® An offline third-party server loads a web page

symbolically

O The symbols are sensitive user values like cookies

and User-Agent strings

O Output of analysis is a list of symbolic URLs (e.qg.,
{{cookie[“userld”]}}.html) fetched by each universe

® Have the user's browser:

O Concretize symbolic client state (thereby picking a

universe)
O Concretize the symbol
O Prefetch the symbolic
® User-specific data is neve

Ic URLS

JRLS

revealed to the third party!

Output of Symbolic Page Load: A Path Constraint Tree

UserAgent

v (11 . b})
Other browser types ‘ =="Chrome Mobile

cookie| “darkMode™}

= — “nO” H “”) ==“yes!!
light-mode.css

A single page load may

> dark-mode.css
gu 1. J S be associated with many
potential universes for

each user! gU1 y J S

iff X
h(“http:/ com/” +
+"jpg");
Tetr\:h(http://foo.com/defaultAvatar.jpg");
}
f o
e C 1 u []
if((‘Chrome Mobile") ||
(== “Safari i0S")){
fetch(“http://foo.com/Android.js”); '
fetch(...) H
else{
fetch(“http://foo.com/default.js");
feteh(...)
T LI | LI | LI | 1
HTMLLY E HTMLLY S HTMLLN 3 HTMLLY &
<css> <css> PCsS @ <css> gcss BIl E <css> P<ss @
il S <script> Js <script>) <script> Js
 { & % & ~
<script> CSS <script> <script> <script>
Js JS
. '« ,
CSS
J

Oblique: End-to-end Workflow Q @

1.Developer uploads page
content to Oblique’s third-
party analysis server
2.0blique returns a path
constraint tree for the page
3.Developer uploads page
content+path constraint tree
to first-party web servers
4.Later, user fetches the page'’s
HTML+path constraint tree
5.0blique’s JavaScript library
concretizes path constraint
tree, prefetches objects

First-party v
content
provider @

CH

Third-party
Obliqueserver

) Client
First-party (A% browser
web servers

aa teach me
R this symbolic analysis
R of which thee speak

Symbolic Analysis :\JJJLS;‘;?LZ
 p—
 —

1. Distributor generates initial r

concrete values for client symbols O;Ir;::;psirrt\‘ller
(e.g.. Cookie="cat=yes”, User- /' Browser (b
Agent="MobileChrome”) Ga) JS engine

2.Executor launches a web browser)

3.Browser fetches concrete page =| H H H]= %?e“ﬂface
HTML from first-party servers (3) re'?L"é'rLer

4.Browser fetches more concrete

objects O, T@

a. CSS and images handled Distributor Executor
as hormal
b. JS evaluated using a SMT solver

concolic engine

As JS executes on concrete data,
Oblique tracks symbolic path

Symbolic Analysis

1. Distributor generates initial constraints and symbolic URLs!
concrete values for client symbols | var baseUrl = “foo.com/”:
(e.g., Cookie="cat=yes”, User- var rndld = Math.random().toString();

if(document.cookie.indexOf(“cat”)==0){

Agent="MobileChrome") fetch(baseUrl + rndld + “/cat.jpg”);

2.Executor launches a web browser |}
3.Browser fetches concrete page
HTML from first-party servers

4.Browser fetches more concrete Concrete URL: foo.com/0.3274/cat.jpg
objects
a. CSS and images handled Symbolic URL:
as normal foo.com/{{rnd,}}/cat.jpg
b. JS evaluated using a Symbolic path constraint:

concolic engine document.cookie = “cat”{{\w*}}

Symbolic Analysis :3323;‘;‘:52
 p—
 —

5.0nce the page load finishes, the 1

symbolic path constraint, e.g. o;ri::épsirfjer

document.cookie = “cat’{{\w*}} Is sent to / Browser @

executor @ JS engine
6.Executor asks the SMT solver to LT

invert part of the constraint {HHH]= %?el\!-lface @
7.S0lver performs inversion, e.g., (3) rel-rlr-lc-i“enrl-er

document.cookie = (*cat”{{\w*}} and

concretizes the new constraint, e.g., @ T@

document.cookie = “x81b5” Distributor ’ Executor

Sl wgpeturns the AR ® ¢ @ _®

\ (P S ho iexeloredneewput
. v N universe!
iINnto aeority queue

SMT solver

Symbolic Analysis

The longer we run the
symbolic analysis, the
more universes we
discover!

what if we don't it's ok
find them all

@ renderer

First-party

web server
va
1
1

 p—

Browser

JS engine

(symbolic
execution)

{HH

HTML

@

Distributor

Executor

SMT solver

Third-party
Oblique server

(0

DOM
interface

0®T ®

Input name

HTTP header

JavaScript variable

Description

User Agent

User-Agent

navigator.userAgent

The local browser type, e.g.,
"Mozilla/5.0 (Windows; U; Win98;
en-US:; 1v:0.9.2) Gecko/20010725
Netscape6/6.1"

Platform

Included in User-Agent

navigator.platform

The local OS, e.g., "Win64"

Screen characteristics

N/A

window.screen.*

Information about the local display,
e.g., the dimensions and pixel depth

Host Host location.host Specifies the virtual host and port
number to use

Referer Referer document.referrer The URL of the page whose link was
followed to generate a request for the
current page

Origin Origin location.origin Like Referer, but only includes the

origin part of the referring URL

Last modified

Last-Modified (response)

document.lastModified

Set by the server to indicate the last
modification date for the returned re-
source

Cookie

Cookie (request), Set-
Cookie (response)

document.cookie

A text string containing "key=value" pairs

Table 1: Symbolic inputs to a client-side page load.

Overview

1.Developer uploads page
content to Oblique’s third-
party analysis server

2.0blique returns a path
constraint tree for the page

3.Developer uploads page
content to first-party web
servers

4.Later, user loads the page

5.0blique’s JavaScript library
concretizes path constraint
tree, prefetches objects

First-party v
content
provider @

CH

Third-party
Obliqueserver

| —

| —

) Client
First-party (A% browser
web servers

Overview

1.Developer uploads page
content to Oblique’s third-
party analysis server

2.0blique returns a path
constraint tree for the page

3.Developer uploads page
content to first-party web
servers

4.Later, user loads the page

5.0blique’s JavaScript library
concretizes path constraint
tree, prefetches objects

var baseUrl = “foo.com/”;
var rndld = Math.random().toString();
if(document.cookie.indexOf(“cat”)==0){
fetch(baseUrl + rndld + “/cat.jpg”);
telsef
fetch(baseUrl + “/dog.jpg”);
}

“cat=0OfCourse; id=42"

document.cookie == “cat”(\w*)

No

foo.com/{{rnd,}}/cat.jpg

Client generates a random number
on-the-fly and then prefetches the

concretized URL! foo.com/dog.jpg

Client determines

which URLs to fetch
without having to

parse the page's
HTML or evaluate the
page's JavaScript! W

“cat=0OfCourse; id=42"

document.cookie == “cat”(\w*)

foo.com/{{rnd,}}/cat.jpg

Client generates a random number
on-the-fly and then prefetches the

concretized URL! foo.com/dog.jpg

LET'S BE HONEST WITH EACH OTHER

Program Analysis Techniques Somewhat

Don’t Work

o Taint tracking
o Implicit flows
o XOR'Ing something with itself should clear taint

o More generally, some kinds of code (e.g., hash functions) should
destroy taint BUT HOW DO YOU KNOW?

o« Formal methods: AIN'T NOBODY GOT TIME TO
WRITE BIG SYSTEMS IN A FORMAL LANGUAGE

e Symbolic analysis

o You almost never have enough time
o Constraint solvers can't solve all constraints
o Black-box code can be hard to model

Limitations of Oblique

o Only certain native methods are modelled

o Forexample, if the JavaScript string variable s contains symbolic
data derived from User-Agent, then String.charAt(s)'s return value
will properly capture that symbolic data

o In contrast, Oblique always treats Intl.DateTimeFormat(s) as fully
concrete, possibly hurting path coverage

o Obligue's concolic analysis may time out, hurting
path coverage

o Obligue's concolic analysis can't issue HT TP
requests that are nonidempotent

Evaluation Setup

e A Mahimahi derivative
recorded content from
200 popular pages

e Digital Ocean VM ran:
o Oblique web server
o Vroom server —_— ((‘)))
o RDR server Live LTE
e User device was a Galaxy connection
S10e phone running

Chromium v78 User Cell
o End-to-end RTT b/w phone tower
phone and Digital Ocean
VM was ~47ms
o We used netem to inject
added latency in some
experiments

VM

~———

[
AN

Speed Index Speedup (%)

-
o N

B Oblique B RDR
o Vroom

o N B O

4

Cold_Cache Warm_Cache

Speed Index (47 ms RTT)

N
92

Speed Index Speedup (%)

o

N
o

-
Ul

o
o

U

B Oblique B RDR
o Vroom

_ Cold_Cache Warm_Cache
Speed Index (150 ms RTT)

L0 oblique (Avg: 88.2 %) y 101 oblique (Avg: 77.8 %) e
0_8- _____ Vroom (Avg: 83.4 %) ./-//' O 8— """ Vroom (Avg: 68.2 %) ’_/f//
——- RDR (Avg: 71.6 %) /'/ / ——+ RDR (Avg: 62.2 %) .-f'//J
w 0.6- ' y 0.6- '
(@] o
Y 0.4 Y 0.4-
0.2- 0.2
0.0- . ' | | | 0.0 ==
0) 20 40 60 80 100 0 20 40 60 80 100
URL hit rate (%) Dynamic URL hit rate (%)

Prefetch hit rate (static+dynamic URLS) Prefetch hit rate (only dynamic URLS)

Outline

How A Browser Loads a Web Page
Impediments to Optimization

Oblique

What | Learned While Working On Oblique

Build a Supportive Community

This paper

/(\ is amazing

EVERYTHING |
LOVE TURNS
TO ASH

N\
Time //

paper

This paper
is okay

Excitement about \

The Atlantic

Why Losing Wimbledon Hurts So
Much

By Kevin Craft

JULY 9, 2012 SHARE WV

Ask Andy Murray and Roger Federer: In tennis, the pain of defeat outweighs the
thrill of victory.

Sports can seem like a cruel joke perpetrated on the athletes that entertain us
week after week. This is because no athlete can escape the paradox at the heart
of sports, which is that the agony of defeat always outweighs the thrill of
victory. Listen to a great athlete articulate why he or she sacrifices so much
and works so hard to compete at a high level, and more often you'll hear them
say that a fear of losing is the chief source of motivation. Rarely if ever will an
athlete say that a joy of winning is what keeps them going, and this careful
choice of words is critical to understanding the psychology of sports. Winning
may bring a certain level of satisfaction, but losing inspires a visceral feeling of
pain, like a sharp punch to the gut, that can stay with someone long after
competition is complete. And this means that even if an athlete wins half of
the time over the course of a career, he or she will end up experiencing more

painful emotions than joyful ones.

Tennis, more than any other professional sport, seems to amplify the pain of
losing. When a tennis player loses a match, he or she must face the pain all
alone. There are no teammates to turn to, no caddy to give an enthusiastic pat
on the back as the match slips from one's grasp. A losing tennis player must
shake hands, wave to the crowd and sit there alone, contemplating what could

have been.

In his book Strokes of Genius, an account of the epic 2008 Wimbledon final
between Federer and Nadal, author Jon Wertheim quotes Toni Nadal, Rafa's

uncle and coach, saying "Victory does not feel so good as losing feels bad.
When you have a son, you are happy. But it's no comparison to the sadness
you feel losing a son." While his metaphor may be a bit strong--losing a
sporting event and losing a child are not commensurate in terms of grief--that

quote underscores the truth about winning and losing in sports.

In academia (and life in general), other people’s failures
are often invisible to you!

O rejections

Polaris: Faster Page Loads Using

Ravi Netravali', Ameesh Goyal”, James Mickens®, Hari Balakrishnan®
“MIT CSAIL

Abstract

To load a web page, a browser mu
vatc objects like HTML files and
code. Evaluating an object can resul
jects being fetched and evaluated. Tt

page requires a browser to resolve a ¢
this partial ordering constrains the s¢ |
browser can process individual obje

many cdges in a page's dependency g

able by today’s browsers. To avoid vio |
dependencies, browsers make conser|
about which objects to process next, I

and CPU underutilized.

We provide two contributions. First |

surcment platform called Scout that
data flows across the JavaScript he:
we show that prior, coarse-grained d
crs miss crucial cdges: across a tc
pages, prior approaches miss 30% o
dian, and 118% at the 95th percentile,
tify the benefits of cxposing these 1
browsers. We introduce Polaris, a d
scheduler that is written in JavaScriy
modifiecd browsers; using a fully au
servers can translate normal pages i

themsclves with Polaris. Polaris uses f

dency graphs to dynamically determir
load, and when. Since Polaris’ graph
cdges, Polaris can aggressively fetch o
minimizes network round trips. Exper
of network conditions show that Pol:
load times by 34% at the median, an
percentile.

1 INTRODUCTION

Users demand that web pages load qu

of just a few milliseconds can result
ing a page carly; such carly abandon

lions of dollars in lost revenue for pag |

"Harvard University

‘ine-grained Dependency Tracking

Prophecy: Accelerating Mobile Page Loads Using Final-state Write Logs

Ravi Netravali®,

James Mickens'

*MIT CSAIL, "Harvard University

ABSTRACT
‘Web browsing on mobile devices is expensive in terms
of battery drainage and i ption. Mobile
so frequently suffer from long load times due
to high-latency cellular jons. Tn this paper, we
introduce Prophecy, a new acceleration technology for
mobile pages. Prophecy simultancously reduces energy
costs, bandwidth consumption, and page load times. In
Prophecy, web servers precompute the JavaScript heap
and the DOM tree for a page: when a mobile browser
requests the page, the server returns a write log that con-
tains a single write per JavaScript variable or DOM node.
The mobile browser replays the writes to quickly recon
struct the final page state, cliding unnccessary interme-
diatc computations. Prophccy’s server-side component
generates write logs by tracking low-level data flows be
tween the JavaScript heap and the DOM. Using knowl-
cdge of these flows, Prophecy cnables optimizations that
are impossible for prior web accelerators; for example,
Prophecy can generate write logs that interleave DOM
consu'uctlon and JavaScript heap construction, allowing
ive page cl s to become ional immedi-
ately after they become visible to the mobile user. Ex-
periments with real pages and real phones show that
Prophecy reduces median page load time by 53%, energy
iturc by 36%, and b costs by 21%.

1 INTRODUCTION

Mobile browsing now gencrates more HTTP traffic than
desktop browsing [18]. On a smartphone, 63% of uscr
focus time, and 54% of overall CPU time, involves a
web browser [S6]; mobile browsing is particularly im-
portant in devcloping nations, where smartphones arc
often a user’s sole access mechanism for web con-
tent [12, 23]. So, mobile page loads are important o op-
timize along multiple axcs: bandwidth consumption, cn
ergy consumption, and page load time. Reducing band-
width overhead allows uscrs to browse more pages with-
out violating data plan limits. Reducing cnergy con

computes the JavaScript state and the DOM stz
belongs 0 a loaded version of a frame. The p
puted JavaScript heap and DOM tree represent
of objects: however, one of Prophecy’s key insi
that this state should be transmitted to clients
form of write logs, not scrialized graphs. At a higl
a write log contains onc write operation per v.
in the frame’s load-time state. By returning wri
for cach variablc’s final state, instcad of rcturni
ditional, unprocessed HTML, CSS, and JavaScr.
browser can clide slow, energy-intensive compu
involving JavaScript ion and ical layc
dering. Conveniently, Prophecy’s write logs for ¢
are smaller than the frame’s original content, and
fetched in a single HTTP-level RTT. Thus, Prop
precomputation also decreases bandwidth consu
and the number of round trips nceded to build a fi

Earlicr attempts at applying precomputation
sites have suffered from significant practical limi
(§6), in part becausc these systems used serialized
instcad of writc logs. Scrialized graphs hide dat:
that write logs capture; analyzing these data fi
necessary 1o perform many optimizations. For ex
Prepack [16] cannot handlec DOM state, and is un
clide computation for some kinds of common Jav.
patterns. Shandian [51] does not support caching
majority of a page’s content, docs not support ir
ate [' m.r.xlmly (§3_5) and d(xﬁ\ not work

| Sh
cxposes all of a user’s cocklcs to a single prox
ing significant privacy concerns. In contrast, Pn
works on commodity browsers, handles both DC.
JavaScript statc, prescrves traditional same-origi
cies about cookie security, and supports byte-grar
caching (which is better than HTTP's standard fil
caching scheme). Prophecy can also prioritize th
ing of interactive state; this feature is important fi
that load over high-latency links, and would ott
prcscm users with rendered GUIs !hal may not a

1 rejection

Vesper: Measuring Time-to-Interactivity for Web Pages

Ravi Netravali’®,

Vikram Nathan'*

, James Mickens?, Hari Balakrishnan'

TMIT CSAIL, *Harvard University

Abstract

Everyone agrees that web pages should load more
quickly. However, a good definition for “page load time™
is clusive. We argue that, for pages that care about user
interaction, load times should be defined with respect
to interactivity: a page is “loaded” when above-the-fold
content is visible, and the associated JavaScript event
handling state is functional. We define a new load time
metric, called Ready Index, which explicitly captures our
proposed notion of load time. Defining the metric is
straightforward, but actually measuring it is not, sincc
web developers do not explicitly annotate the JavaScript
state and the DOM clements which support interactiv-
ity. To solve this problem, we introduce Vesper, a tool
that rewrites a page’s JavaScript and ITTML to automat-
ically discover the page’s interactive state. Armed with
Vesper, we compare Ready Index to prior load time met
rics like Speed Index; across a variety of network con-
ditions, prior metrics underestimate or overcstimate the
truc load time for a page by 24%-64%. We introducc a
ool that optimizes a page for Ready Index, decreasing
the median time to page interactivity by 29%—32%.

1 INTRODUCTION

Users want web pages to load quickly [31, 40, 42]. Thus,
a vast array of techniques have been invented to de
crease load times. For example, browser caches try o
satisfy nctwork requests using local storage. CDNs [9,
27, 36| push servers near clients, so that cache misses
can be handled with minimal network latency. Cloud
browscrs [4, 29, 34, 38] rcsolve a page’s dependency
graph on a proxy that has low-latency links to web
servers; this allows a client to download all objects in
a page using a single HTTP round-trip to the proxy.

All of these approaches try to reduce page load time.
Howcver, an inconvenicent truth remains: none of these
techniques dircctly optimize the speed with which a page
becomes interactive. Modern web pages have sophisti-
cated, dynamic GUIs that contain both visual and pro-

T PR PR PR

i

1.004
w 0.754
o 050+
0,254
0.00+ T T ~
0 250 500 750 1000
Number of Event Handlers

Figure 1: For the Alexa US Top 500 sites, we observe
the median number of GUT event handlers to be 182,

for a page to be ready for user intcraction. As shown i
Figurc 1, pages often contain hundreds of cvent handlel
that drive interactivity.

In this paper, we proposc a new definition for load tim
that directly captures page interactivity. We define a pag
to be fully loaded when:

(1) the visual content in the initial browser viewpor
has completely rendered, and
(2) for cach interactive clement in the imitial viev
port, thc browser has fetched and cvalvated th
JavaScript and DOM state that supports the el
ment’s inleractive functionality.
Prior definitions for page load time overdetermine or ul
derdetermine one or both of those conditions (§2), lea
ing to inaccurate measurcments of page interactivity, F
example, the traditional definition of page load time, :
represented by the JavaScript onload event, captur
when all of a page’s HTML, JavaScript, CSS, and imag
have been fetched and evaluated: however, this definitic
is overly conservative, since only a subset of that stal
may be needed to allow a uscr to interact with the contel
in the initial viewport. Newer metrics like above-the-fol
time [21] and Speed Tndex [14] measure the time that
page nceds to render the initial viewport. However, the:
metrics do not capture whether the page has loaded cri
ical JavaScript state (c.g., event handlers that respond |
GUI interactions, or timers that implement animations)

To accurately measure page interactivity, we must de
termine when conditions (1) and (2) are satisfied. Dete
mining when condition (1) has been satisfied is relativel
straightforward, since rendering progress can be me:

And then got the Best Paper

award at SOCC 2019/
O rejections

Reverb: Speculative Debugging for Web Applications

Ravi Netravali
UCLA

ABSTRACT
Bugs are common in web pages. Unfortunately, traditional debug-

James Mickens
Harvard University

at a moment in time; h inan t-driven prog with ex-
lcmm: network and Gul mtcractmm bug diagnosis often requires
g 1o a buggy value’s prove

ging primitives like breakpoints are crude tools for und ding the
asynchronous, widc-arca data flows that bind client-side JavaScript
code and server-side application logic. In this paper, we describe
Reverb, a powerful new debugger that makes data flows explicit
and queryable. Reverb provides three novel features. First, Reverb
tracks precise value p ¢, allowing a developer to quickly
identify the reads and writes to JavaScript state that affected a par-
ticular variable’s valuc. Second, Reverb cnables speculative bug
fix analysis. A developer can replay a program to a certain point,
change code or data in the program, and then resume the replay; Re

nance aCTOSS muluple .bymhmu» code paths. This provenance
data is not exposed by more advanced tools for replay debugging or
program slicing (§2).

In this paper, we introduce Reverb, a new debugger for web
applications. Reverb has three features which enable a fundamentally
more powerful debugging experience. First, Reverb tracks precise
value provenance, i.e., the exact sel of reads and writes (and the
associated source code lines) that produce each program value. Like
a m\dmonal n:play debugger [13, 36, 62], Reverb rewrds .ul of

verb uses the ining log of d events 1o i
the post-edit replay, allowing the developer to mvcwgalc whclhcr

the hypothesized bug fix would have helped the original
run. Third, Reverb supports wide-area debugging for applications
whose server-side components usc cvent-driven architectures. By
tracking the data flows between clients and servers, Reverb enables
speculative replaying of the distributed application.

KEYWORDS
record-and-replay debugging, systems debugging

ACM Reference Format:

Ravi Netravali and James Mickens, 2019. Reverb: Speculative Debugging
for Web Applications. In SoCC "19: ACM Symposium of Cloud Computing
conference, Nov 20-23, 2019, Santa Cruz, CA. ACM, New York, NY, USA,
16 pages. hitps:/idos.org/10.1145/3357223.3362733

1 INTRODUCTION

fl the istic cvents from a program’s 11
Rcvcrh to replay a huggy cmcunon with perfect hdcllty llnllkc a
ional replay debugger, Reverb also records the deterministic

values that are manipulated by reads and writes of page state. Using
this extra information at replay time, Reverb enables developers 1o
query fine-grained data flow logs and quickly answer questions like
“Did variable x influence variable y”7" or “Was variable z's value
affected by a control flow lhal traversed function £ () 77 Reverb's
logging of both d inistic and d ic events is fast
enough to run in production: for the median web page in our 300
page test corpus, Reverb increases page load time by only 5.5%,
while producing logs that are only 45.4 KB in size.

Reverb’s second unique feature is support for speculative bug fix
analysis. At replay time, Reverb allows a developer to pause the
application being debugged, edit the code or data of the application,
and then resume the replay. Post-edit, Reverb replays the remaining
nondeterministic events in the log, using carefully-defined seman-
tics (§3.3) to determine how those events should be replayed in the
context of the edited program execution. Once the altered execu-

Debugging the client-side of a web appl is hard. The DOM tion has finished replaying, Reverb identifies the control flows and
interface [40], which specifies how Script code 1 wuh the data flows which differ in the edited and original executions. These
rest of the browser, is ing and ly new lyses help developers to inc whether a h T thesi ‘huy,
features |27, 35). I the DOM interface is pervasively fix would have helped the original prog: S I

asynchronous and cvent-driven, making it challenging for develop-
ers to track causality across event handlers [26, 36, 49, 72]. As a
n:sull J.lv.lSmpl huga are endemic, even on popular sites that are
I by p I developers [57, 591.
Commodity browsers include JavaScript debuggers that support
breakpoints and walchpomts Howcvw fixing bugs is still hard.
ARy i

Rreaknointe and

edit-and-replay is unsound, in the sense that a post-edit program can
misbehave in arbitrary ways, e.g., by attempting to read an undefined
variable. However, even without Reverb, the process of testing bug
fixes is unsound. A developer typically lacks a prion knowledge
about whether a hypothesized fix will work. The developer imple-
ments the hypothesized fix, and then runs tests and tries to determine
- o B Ly L

Build a Supportive Community

® You are not the only one who:

/ This | s o Has papers get rejected

L /{ O .Occa5|onally.says somgthmg
E iIncorrect during a meeting
E . o Isn't sure which career path is
s 8 EVERYTHING | the best one
S &’ Orc eS| @ A stron rt group is important
S & [This paper g support group is importa
= is okay o Talk to other students (even in
S N other departments!)

Time // o Make time to not do work

o Don't be afraid to talk to mental

health professionals

Conclusion
Prefetching helps to reduce page load times

Prior systems generate prefetch lists by:

o Breaking TLS integrity, or

o Preventing third-party outsourcing of the analysis
Oblique uses symbolic execution to eliminate the

design tension
o Obligue's third-party server can model user-specific data
as symbols
o Symbols are only resolved by clients!
Obligue reduces page loads by up to 31%, outperforming
Vroom and RDR by up to 17%

