
Oblique: Accelerating
Page Loads Using

Symbolic Execution

James Mickens
Harvard University

Why I’m Interested in Load Time Optimization

THIS HAPPENED TO ME
LAST NIGHT

did
not
complete

Outline
● How A Browser Loads a Web Page
● Impediments to Optimization
● Oblique
● What I Learned While Working On Oblique

How Does A Browser Load a Page?

Web server

GET http://foo.com

User phone

http://foo.com
<html>
<head>
<title>Hi!</title>
<link rel=“stylesheet”

href=“style.css”>
<script src=“foo.js”/>

</head>
<body>
<div>
<p>Some content</p>

</div>
</body>
</html>

How Does A Browser Load a Page?

Web serverUser phone

● The HTML contains tags that reference
external objects

● To fully load the page, the browser must
fetch all of these external objects!

http://foo.com

How Does A Browser Load a Page?

Web serverUser phone

● The HTML contains tags that reference
external objects

● To fully load the page, the browser must
fetch all of these external objects!

http://foo.com

GET http://foo.com/c.css

How Does A Browser Load a Page?

Web serverUser phone

http://foo.com

GET http://foo.com/first.js

How Does A Browser Load a Page?

Web serverUser phone

http://foo.com

if(){
fetch(“http://foo.com/” +

+ “.jpg”);
}else{

fetch(“http://foo.com/defaultAvatar.jpg”);
}

GET http://foo.com/42.jpg
[IF-BODY TAKEN]

How Does A Browser Load a Page?

Web serverUser phone

http://foo.com

if(){
fetch(“http://foo.com/” +

+ “.jpg”);
}else{

fetch(“http://foo.com/defaultAvatar.jpg”);
}

GET http://foo.com/defaultAvatar.jpg

[ELSE-BODY TAKEN]

How Does A Browser Load a Page?
http://foo.com

http://foo.com

Universe 1

Universe 2

● Some objects to fetch are
statically known, given the HTML

● The if/else JS statement created
two different universes because of
dynamic content resolution

● Branches may check
state like a !

● Some dynamically-selected
content may be !

A single page load may
be associated with many
potential universes for

each user!

if(){
fetch(“http://foo.com/” +

+ “.jpg”);
}else{

fetch(“http://foo.com/defaultAvatar.jpg”);
}

…

if((== “Chrome Mobile”) ||
(== “Safari iOS”)){
fetch(“http://foo.com/Android.js”);
fetch();

}else{
fetch(“http://foo.com/default.js”);
fetch(…);

}

…

What If We Could Predict A Client’s Universe?
● A client could issue a fetch

for a page’s HTML . . .
● . . . and the server could

return:
○ The HTML
○ A list of the URLs belonging

to external objects

o The client could then prefetch those
URLs before the HTML parse occurs
o When the parse realizes that a

particular object is needed, the object
already resides locally

o So, object fetch latencies are hidden!

Client Web server Web server2 Web server3
GET . . .

HTML +
URL listHTML parse

begins

Objects
prefetched

HTML parse
finds external
URLs; objects
already local!

Outline
● How A Browser Loads a Web Page
● Impediments to Optimization
● Oblique
● What I Learned While Working On Oblique

Two Problematic Trends in Web Traffic
● Mobile traffic is growing (> 50%)

○ Many mobile users (particularly in
emerging markets) stuck behind
high-latency 3G/4G links

○ Even 5G links often suffer from 4G
latencies

○ Latency, not bandwidth, often
determines page load times!

● Traffic is shifting to HTTPS (> 90%)
○ The crypto is cheap . . .
○ . . . but how can we accelerate

encrypted mobile traffic while
preserving confidentiality and
integrity?

Remote Dependency Resolution
(e.g., Amazon Silk, Parcel)

Third-party
proxy

User
phone

First-party
web server

Headless
browser Low-latency

path

High-latency
path

[Loads requested page,
pushes discovered

objects ASAP]

Remote Dependency Resolution
(e.g., Amazon Silk, Parcel)

Third-party
proxy

User
phone

First-party
web server

Headless
browser Low-latency

path

Breaks end-to-end TLS
security: cleartext user
data (e.g., cookies and
User-Agent string) are
exposed to third party

Enables outsourcing of web
acceleration

High-latency
path

[Loads requested page,
pushes discovered

objects ASAP]

Two Problematic Trends in Web Traffic

Vroom (SIGCOMM 2017)

Analysis must be run by
the first party: outsourcing
would break TLS security

Doesn’t expose cleartext
TLS data to third-party
origins

First-party
web server

User
phone

First-party offline
analysis server

Loads page multiple
times, identifies the
stable set URLs

Server uses <link>
prefetch and H2 push
to prewarm client
cache

Two Problematic Trends in Web Traffic

Outline
● How A Browser Loads a Web Page
● Impediments to Optimization
● Oblique
● What I Learned While Working On Oblique

Oblique: The Big Idea™
● An offline third-party server loads a web page

symbolically
○ The symbols are sensitive user values like cookies

and User-Agent strings
○ Output of analysis is a list of symbolic URLs (e.g.,

{{cookie[“userId”]}}.html) fetched by each universe
● Have the user’s browser:
○ Concretize symbolic client state (thereby picking a

universe)
○ Concretize the symbolic URLs
○ Prefetch the symbolic URLs

● User-specific data is never revealed to the third party!

Output of Symbolic Page Load: A Path Constraint Tree
UserAgent

==“Chrome Mobile”Other browser types

cookie[“darkMode”]

dark-mode.css
gui.js

{{cookie[“userId”]}}.html

==“yes”
light-mode.css
gui.js
default.html

==(“no” || “”)

1.Developer uploads page
content to Oblique’s third-
party analysis server

2.Oblique returns a path
constraint tree for the page

3.Developer uploads page
content+path constraint tree
to first-party web servers

4.Later, user fetches the page’s
HTML+path constraint tree

5.Oblique’s JavaScript library
concretizes path constraint
tree, prefetches objects

Oblique: End-to-end Workflow

Symbolic Analysis
1.Distributor generates initial

concrete values for client symbols
(e.g., Cookie=”cat=yes”, User-
Agent=”MobileChrome”)

2.Executor launches a web browser
3.Browser fetches concrete page

HTML from first-party servers
4.Browser fetches more concrete

objects
a. CSS and images handled

as normal
b. JS evaluated using a

concolic engine

First-party
web server

Distributor Executor

SMT solver

DOM
interface

1 2

3

4a

4b

HTML
renderer

JS engine
(symbolic
execution)

Browser

Third-party
Oblique server

Symbolic Analysis
1.Distributor generates initial

concrete values for client symbols
(e.g., Cookie=”cat=yes”, User-
Agent=”MobileChrome”).

2.Executor launches a web browser
3.Browser fetches concrete page

HTML from first-party servers
4.Browser fetches more concrete

objects
a. CSS and images handled

as normal
b. JS evaluated using a

concolic engine

As JS executes on concrete data,
Oblique tracks symbolic path
constraints and symbolic URLs!

var baseUrl = “foo.com/”;
var rndId = Math.random().toString();
if(document.cookie.indexOf(“cat”)==0){

fetch(baseUrl + rndId + “/cat.jpg”);
}else{

fetch(baseUrl + “/dog.jpg”);
}

Concrete URL: foo.com/0.3274/cat.jpg

Symbolic URL:
foo.com/{{rnd0}}/cat.jpg
Symbolic path constraint:
document.cookie = “cat”{{\w*}}

Symbolic Analysis
5.Once the page load finishes, the

symbolic path constraint, e.g.
document.cookie = “cat”{{\w*}} is sent to
executor

6.Executor asks the SMT solver to
invert part of the constraint

7.Solver performs inversion, e.g.,
document.cookie= (^“cat”){{\w*}} and
concretizes the new constraint, e.g.,
document.cookie = “x81b5”

8.Solver returns the new test input to
the distributor, who inserts the input
into a priority queue

First-party
web server

Distributor Executor

SMT solver

DOM
interface

1 2

3

4a

4b

5

678

HTML
renderer

JS engine
(symbolic
execution)

Browser

Third-party
Oblique server

This input would
explore a new
universe!

Symbolic Analysis First-party
web server

Distributor Executor

SMT solver

DOM
interface

1 2

3

4a

4b

5

678

HTML
renderer

JS engine
(symbolic
execution)

Browser

Third-party
Oblique serverThe longer we run the

symbolic analysis, the
more universes we
discover!

it’s okwhat if we don’t
find them all

Overview
1.Developer uploads page

content to Oblique’s third-
party analysis server

2.Oblique returns a path
constraint tree for the page

3.Developer uploads page
content to first-party web
servers

4.Later, user loads the page
5.Oblique’s JavaScript library

concretizes path constraint
tree, prefetches objects

Overview
1.Developer uploads page

content to Oblique’s third-
party analysis server

2.Oblique returns a path
constraint tree for the page

3.Developer uploads page
content to first-party web
servers

4.Later, user loads the page
5.Oblique’s JavaScript library

concretizes path constraint
tree, prefetches objects

var baseUrl = “foo.com/”;
var rndId = Math.random().toString();
if(document.cookie.indexOf(“cat”)==0){

fetch(baseUrl + rndId + “/cat.jpg”);
}else{

fetch(baseUrl + “/dog.jpg”);
}

foo.com/{{rnd0}}/cat.jpg

foo.com/dog.jpg

document.cookie == “cat”(\w*)

“cat=OfCourse; id=42”

Client generates a random number
on-the-fly and then prefetches the
concretized URL!

Yes No

foo.com/{{rnd0}}/cat.jpg

foo.com/dog.jpg

document.cookie == “cat”(\w*)

“cat=OfCourse; id=42”

Client generates a random number
on-the-fly and then prefetches the
concretized URL!

Yes No

Client determines
which URLs to fetch
without having to
parse the page’s
HTML or evaluate the
page’s JavaScript!

LET’S BE HONEST WITH EACH OTHER

Program Analysis Techniques Somewhat
Don’t Work

● Taint tracking
○ Implicit flows
○ XOR’ing something with itself should clear taint
○ More generally, some kinds of code (e.g., hash functions) should

destroy taint BUT HOW DO YOU KNOW?
● Formal methods: AIN’T NOBODY GOT TIME TO

WRITE BIG SYSTEMS IN A FORMAL LANGUAGE
● Symbolic analysis

○ You almost never have enough time
○ Constraint solvers can’t solve all constraints
○ Black-box code can be hard to model

Limitations of Oblique
● Only certain native methods are modelled

○ For example, if the JavaScript string variable s contains symbolic
data derived from User-Agent, then String.charAt(s)’s return value
will properly capture that symbolic data

○ In contrast, Oblique always treats Intl.DateTimeFormat(s) as fully
concrete, possibly hurting path coverage

● Oblique’s concolic analysis may time out, hurting
path coverage

● Oblique’s concolic analysis can’t issue HTTP
requests that are nonidempotent

Evaluation Setup

User
phone Digital Ocean

VM

Live LTE
connection

Cell
tower

● A Mahimahi derivative
recorded content from
200 popular pages

● Digital Ocean VM ran:
○ Oblique web server
○ Vroom server
○ RDR server

● User device was a Galaxy
S10e phone running
Chromium v78
○ End-to-end RTT b/w

phone and Digital Ocean
VM was ~47ms

○ We used netem to inject
added latency in some
experiments

Outline
● How A Browser Loads a Web Page
● Impediments to Optimization
● Oblique
● What I Learned While Working On Oblique

Time

Ex
ci

te
m

en
t a

bo
ut

pa

pe
r

This paper
is amazing

EVERYTHING I
LOVE TURNS

TO ASHThis paper
is okay

Build a Supportive Community

In academia (and life in general), other people’s failures
are often invisible to you!

Time

E
xc

it
em

en
t

ab
ou

t
pa

pe
r

This paper
is amazing

EVERYTHING I
LOVE TURNS

TO ASHThis paper
is okay

Build a Supportive Community
● You are not the only one who:

○ Has papers get rejected
○ Occasionally says something

incorrect during a meeting
○ Isn’t sure which career path is

the best one
● A strong support group is important

○ Talk to other students (even in
other departments!)

○ Make time to not do work
○ Don’t be afraid to talk to mental

health professionals

Conclusion
● Prefetching helps to reduce page load times
● Prior systems generate prefetch lists by:

○ Breaking TLS integrity, or
○ Preventing third-party outsourcing of the analysis

● Oblique uses symbolic execution to eliminate the
design tension
○ Oblique’s third-party server can model user-specific data

as symbols
○ Symbols are only resolved by clients!

● Oblique reduces page loads by up to 31%, outperforming
Vroom and RDR by up to 17%

