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# Joints: 25
# Actions per Joint: 3
# Actions every ms:  325 = 1011
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Bremermann limit

1.36⇥ 1050

bits per kilogram per second



Computer of Size of Earth

1075 Ops per second

1079 Seconds for 512 crypto key



Searching the space of possible actions

1075 Ops per second

1064 Seconds to brute-force 

search actions
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We need some kind of search bias!

Data Priors
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RGB & Depth

Active Stereo

Force/Torque

Tactile Audio

Joint Torque





Exploiting Multi-Modality

J. J. Gibson (1966) - The Senses 
considered as a Perceptual System.
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Concurrency of Motion and Sensing

Held and Hein (1963). 
Movement-Produced 
Stimulation in the 
Development of Visually-
Guided Behaviour



Accumulation over Time

Thanks to Prof. Octavia Camps at Northeastern University, Boston
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Tactile sensing is a component of 
haptics

Temperature

Texture


Slip

Vibration

 Force    

Location

Configuration


Motion

Force


ComplianceCutaneous

(Tactile)

Kinesthesia

The haptic senses work together 
with the motor control system to:

- Coordinate movement

- Enable perception

Johansson and Westling

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



What happens without tactile sensing?

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Vision vs. Touch

centralized

broad

passive

cognitive

distributed

narrow

active


physical
Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Epidermis

Dermis

Subcutis
A. FA-II

B. FA-I C. SA-I D. SA-II

A. Pacini
B. Meissner
C. Merkel
D. Ruffini

Human mechanoreceptors

28

Cutkosky M.R. and Ulmen, J., “Dynamic tactile sensing,” in The Human Hand as an Inspiration for Robotic Hands,  
R. Balasubrmanian and V. Santos, eds., Springer Verlag. 

Receptor receptive field frequency range sensed quantity
FA-I Meissner 
corpuscles 140/cm^2 
1cmcm^2cmfingertips

3-4mm 5-60 Hz dynamic skin 
deformation

SA-I Merkel endings

70/cm^2 3-4mm 0-5 Hz compressive stresses

FA-II Pacini corpuscles >20mm 50-500+ Hz (peak 
sensitivity ~250 Hz) vibration

SA-II  Ruffini endings >10mm 0-10 Hz directional skin stretch
table data from various sources (see Johansson & Flanagan 2009 for review)



Mapping mechanoreceptors

R. S. Johansson, J. R. Flanagan, Coding and use of tactile signals from 
the fingertips in object manipulation tasks, Nature Reviews, 2009

[Cutkosky, Ulmen, ‘14]



[Johansson, Flanagan, ‘09]

Tactile events in manipulation tasks

Dexterous manipulation is about 
balancing grip and load forces to 
object surface properties

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Tactile events in manipulation tasks

[Johansson, Flanagan, ‘09]

fingers contact 
object

object makes or breaks 
contact with surface

contact

released

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Thermal sensing	

• separate warm and cold receptors whose 
firing rate depends on magnitude of 
difference w.r.t body temperature


• both slowly adapting (SA) and rapidly 
adapting (FA) characteristics, so depends 
on both T and dT/dt


• perception strongly affected by body 
temperature versus temperature at 
surface of skin (aluminum feels cooler at 
room temperature than wood) -- an 
important component of material 
identification

32

R.K. Adair. A model of the detection of warmth and cold by 
cutaneous sensors through effects on voltage-gated 
membrane channels, PNAS 1999 96 (21).

free nerve endings

for temperature, pain

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Tactile Sensing in Nature

Antennae

Star-nosed 
mole

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)
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Why Tactile Sensing? 

Uses of tactile sensing in roboticsUses of tactile sensing in humans

A

A

C C

B
B

Three main activities:

A. Manipulation

B. Exploration

C. Response

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Types of Sensors

● Most important measured quantities: force and shape

○ Average or distribution across contact area


5 main types of sensors

● Proprioceptive

● Kinematic

● Force

● Dynamic tactile

● Array tactile


Other sensors:

● Thermal, material composition, etc.

Sensors integrated in a robotic hand.
Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Proprioceptive and Proximity Sensing

● Spatial proprioception 
To measure the net force or motion of an 
appendage.

○ Joint angle

○ Force-torque sensors 

● Proximity sensors 
To explore the environment, and detect collisions.

○ Contact (Whiskers & Antennae)

○ Non contact (Infrared, Ultrasonic, ...)

Robot hand with joint angle sensors.

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Force and Load Sensing

Force sensors +  fingertip 
geometry to estimate contact 
location.

Multi-axis fingertip force-torque 
sensor.

To measure contact forces.


● Actuator Effort Sensors 
Servo motors → motor current 
Cables → cable tension  

● Force Sensors

○ Mounted at the base joint, wrist, or distributed.

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Dynamic Tactile Sensors

To detect slips, and to sense textures and features.

Robot hand with dynamic tactile 
sensor.

Cutkosky, Mark R., and John Ulmen. "Dynamic tactile sensing." In The 
Human Hand as an Inspiration for Robot Hand Development, pp. 389-403. 
Springer, Cham, 2014.

Ex. Capacitive tactile sensing (video)

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)

http://handbookofrobotics.org/view-chapter/28/videodetails/14


Array Sensors

To sense shape and pressure.


● Contact Location Sensors

○ 2D switch array 

● Pressure Sensing Arrays Capacitive touch and joint angle 
sensors on a flexible circuit for 
incorporation in a robotic hand.

Ex. The effect of twice dropping, and then gently placing, a two-gram weight 
on a small capacitive tactile array. (video) 

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)

http://handbookofrobotics.org/view-chapter/28/videodetails/15


Tactile Information Processing

Manipulation

ExplorationResponse

Event detection

Contact locations and forces

Geometric and material 
properties of the object

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



From sensed quantities to information
sensor

high-level

information

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



From sensed quantities to information
sensor

high-level

information

transformation

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



From sensed quantities to information
sensor transformation low-level


information

high-level

information

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



From sensed quantities to information
sensor transformation low-level


information interpretation

high-level

information

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)
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RGB Images + End Effector F/T

Multimodal Representation for Manipulation



Vision and Touch are complementary 
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Learning a policy that leverages Vision & Touch

RGB image

Force data

Proprioception

Input Policy Output

End Effector 

Displacements

Encoder



Representation Learning
Encoders

robot

action

Fusion

0 / 1

contact in


the next step?

0 / 1

time-aligned?

Action-conditional

optical flow

RGB image

Force data

Proprioception

Input Decoders



Learning a Policy based on this Representation

RGB image

Force data

Proprioception

Input Policy Output

End Effector 

Displacements

Encoder

TRPOLearned Representation



Experimental setup

51

Multimodal 

sensory

inputs

RGB force/torque robot states
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Peg geometry

TestingTraining

Experimental setup
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We evaluate our representation with policy learning

round

Episode 0


0% success rate

Episode 100


21% success rate

x1
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We efficiently learn policies in 5 hours

Episode 300 Episode 300

71% success rate 92% success rate73% success rate

Episode 300



How is each modality used?

55
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1

Simulation Results

(Randomized box location)

Force Only: Can’t find box

 

Image Only: Struggles with peg 
alignment


Force & Image: Can learn full task 
completion

0
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Does our representation generalize to new geometries?
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92% Success Rate

Policy

Representation

Tested on

Does our representation generalize to new geometries?
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Does our representation generalize to new policies?

62% Success Rate

Policy does not transfer

Policy

Representation

92% Success Rate

Policy

Representation

Tested on Tested on
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Does our representation generalize?
92% Success Rate

Representation transfers

Policy

Representation

Policy

Representation

92% Success Rate

Policy does not transfer

Policy

Representation

62% Success Rate

Tested on Tested on Tested on



Force

Perturbation

1

Camera

Occlusion

2

60

Our multimodal policy is robust against sensor noise



External Perturbation
61

External Force
The policy is able to recover  

from external pushes on the arm.

x1



Generalize to Unseen Locations
62

Target Movement

The policy is able to handle small 

offsets of the position of the box  

(in new unseen locations)

* no object in environment is trackedx1



Overview of our method

63

Policy learning

Deep RL


5 hours

π( f( ⋅ )) = a

Representation learning

20 epochs on GPU


24 hours

f(oRGB, oforce, orobot)

Self-supervised data collection

100k data points


90 minutes

oRGB, oforce, orobot

Lee et al. Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal 

Representations for Contact-Rich Tasks. ICRA’19. Best Paper Award.



Lessons Learned

64

1. Self-supervision gives us rich learning objectives 


2. Representation that captures concurrency and 

dynamics can generalize across task instances


3. Our experiments show that multimodal representation 

leads to learning efficiency and policy robustness



Force and Load Sensing

Force sensors +  fingertip 
geometry to estimate contact 
location.

Multi-axis fingertip force-torque 
sensor.

To measure contact forces.


● Actuator Effort Sensors 
Servo motors → motor current 
Cables → cable tension  

● Force Sensors

○ Mounted at the base joint, wrist, or distributed.

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Why Tactile Sensing? 

Uses of tactile sensing in roboticsUses of tactile sensing in humans

A

A

C C

B
B

Three main activities:

A. Manipulation

B. Exploration

C. Response

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



GelSight

• Optical sensor with 
deformable elastomer


• Geometry sensing

• High spatial resolution

• Independent from optical 

properties of the object

W. Yuan, S. Dong, E. H. Adelson, GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and 
Force, 2017. 
Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)





Challenges addressed 

1. Measurement of shear 
force


2. Detecting contact area

3. Hardware optimization

4. Fabrication

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Marker Motion for Force Measurement

• Magnitude of the motion 
is roughly proportional to 
force


• In (b) when the shear 
load increases until slip 
occurs

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Touch Sensing for Robotics - What’s next?



Thank you for your Attention!

Monday: Prof. Monroe Kennedy on Dense Tact



Appendix


