Robotic Manipulation and the
Sense of Touch

Background for Monroe Kennedy's DenseTact
Jeannette Bohg - Stanford University

Interactive Perception and Robot Learning lab
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Joints: 25

Actions per Joint: 3

Actions every ms: 3% = 101!

Robot Manipulation - Why Is It hard?
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Joints: 25

Actions per Joint: 3
@ Actions every ms: 3% = 10'!
Action Sequences: 32>
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Bremermann limit

1.36 x 10°Y

bits per kilogram per second




Computer of Size of Earth

Ops per second

Seconds for 512 crypto key




Searching the space of possible actions

075

Ops per second

064

Seconds to brute-force
search actions
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Tactile

Force/Torque

Joint Torque






Success Rate
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Exploitiulti—ModaIity

. N o | - Touch
PRAE ~ TN \ ¥ J. J. Gibson (1966) - The Senses

considered as a Perceptual System.



Concurrency of Motion and Sensing

Held and Hein (1963).
Movement-Produced
Stimulation in the
Development of Visually-

Guided Behaviour




Accumulation over

Thanks to Prof. Octavia Camps at Northeastern University, Boston
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Tactile sensing is a component of
haptics

~- 4. Kinesthesia

A W Location
. . | Configuration

»'

- Motion

\

| Force
Cutane_ous ASTH Compliance
(Tactile) ik
Te m pe ratu re Johansson and Westling
Texture |
g|; The haptic senses work together
_ p with the motor control system to:
Vibration - Coordinate movement
Force - Enable perception

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



What happens without tactile sensing?

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Vision vs. Touch

centralized
broad

= * passive
s cognitive

distributed
narrow
active
physical

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)




Human mechanoreceptors

Epidermis \/

M %

&\/\/ J\\ o

E A. Pacini
4
/ ‘T’ N\ .
| % \ % D SAI B. Meissner
Dermis—- B.FA-l C. Merkel
= D. Ruffini
Subcutis— C — @
L A. FA-II
Cutkosky M.R. and Ulmen, J., “Dynamic tactile sensing,” in The Human Hand as an Inspiration for Robotic Hands,
R. Balasubrmanian and V. Santos, eds., Springer Verlag.

Receptor receptive field frequency range sensed quantity
FA-I Meissner dynamic skin
corpuscles 140/cm”2 3-4mm 8ll iz deformation
SA-|I Merkel endings :
70/cmA2 3-4mm 0-5 Hz compressive stresses

.. 50-500+ Hz (peak .
FA-ll Pacini corpuscles >20mm sensitivity ~250 Hz) vibration
SA-II Ruffini endings >10mm 0-10 Hz directional skin stretch

table data from various sources (see Johansson & Flanagan 2009 for review)28



Afferent type Receptive field Density

Mapping mechanoreceptors Ty —

* Sensitive to dynamic skin
. deformation of relatively

/ high frequency (~5-50 Hz)
Py * Insensitive to static force
/ * Transmit enhanced
. representations of local
- spatial discontinuities
. (e.g. edge contours and
Braille-like stimuli)

> SA-| (slowly-adapting type I)
Merkel endings

* Sensitive to low-frequency
dynamic skin deformations
(<~5Hz)

* Sensitive to static force

¢ Transmit enhanced
representations of local
spatial discontinuities

FA-Il (fast-adapting type Il)
Pacini ending

* Extremely sensitive to
mechanical transients and
high-frequency vibrations
(~40-400 Hz) propagating
through tissues

* Insensitive to static force
* Respond to distant events

acting on hand-held objects

SA-Il (slowly-adapting type l)

| Ruffini-like endings
T - ¢ * Low dynamic sensitivity
-, - * Sensitive to static force

¢ Sense tension in dermal and

p subcutaneous collagenous
[CUtkOSk)/, Ulmen, 14] ﬁbres:rands ’

* Canfirein the absence
of externally applied

R. S. Johansson, J. R. Flanagan, Coding and use of tactile signals from stimulationandrespondto Touch or skin stretch

remotely applied stretching

the fingertips in object manipulation tasks, Nature Reviews, 2009 ofthe skin




Tactile events in manipulation tasks

a Digits Object Object Object Digits
contact lifts off approaches contacts release

object surface  goal height surface object

Task subgoals
{control points)

‘ A’ — 1 l:’ . P L r O:‘ :0 v“ :}

-

<
|

ol Y -
Unload ) —

Action-phase controllers g, Load Lft | Hold ] Replace
(action phases)

Vertical movement

Load force

Grip force

Motor commands

Vertical position

Sensory predictions

Predicted tactile
subgoal events

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)

Dexterous manipulation is about
balancing grip and load forces to
object surface properties

[Johansson, Flanagan, ‘09]



Tactile events in manipulation tasks

g % 2
Reach/\ Load Lift Hold AReplace Unloadk
FA- '/Nm B | M
T 1
SA-| L L E N
TTHEETTTT Ly
FA-II ! 1) |
| L, |
SA-I P AR Tl |
B mm n |
SA-IL Ll
BE/AREEE T
fingers.contact iject makes or breaks contact
object contact with surface released

[Johansson, Flanagan, ‘09]
Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)



Thermal sensing

free nerve endings
for temperature, pain

* separate warm and cold receptors whose
firing rate depends on magnitude of
difference w.r.t body temperature

* both slowly adapting (SA) and rapidly
adapting (FA) characteristics, so depends
on both T and dT/dt

» perception strongly affected by body
temperature versus temperature at
surface of skin (aluminum feels cooler at
room temperature than wood) -- an
important component of material
identification

R.K. Adair. A model of the detection of warmth and cold by
cutaneous sensors through effects on voltage-gated
membrane channels, PNAS 1999 96 (21).

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)

32



Tactile Sensing in Nature

Antennae

Rat’s whiskers

systematic map

of separate
g tactile channels
Star-nosed 006 governed by
mole ‘TR R the mechanical
properties of
the whiskers
High Low
I
thickness and length [Gugig, 2020]

-

Slide Credit: Allison Okamura and Mark Cutkosky (Stanford ME)
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Why Tactile Sensing?

Three main activities:
A. Manipulation
B. Exploration
C. Response

Manipulation: Grasp force
control; contact locations and
kinematics; stability assessment.

Exploration: Surface texture,
friction and hardness; thermal
properties; local features.

Response: Detection and reaction
to contacts from external agents.

Uses of tactile sensing in humans Uses of tactile sensing in robotics
Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



Types of Sensors

e Most important measured quantities: force and shape

o Average or distribution across contact area

5 main types of sensors
e Proprioceptive

e Kinematic

e [orce

e Dynamic tactile

e Array tactile

Other sensors:
e [hermal, material composition, etc.

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)

Tactile array

/ Sensor

Fingertip
force/torque
Sensor

Dynamic
tactile
Sensor

Point of
contact

angle/torque
SEeNnsors

Sensors integrated in a robotic hand.



Proprioceptive and Proximity Sensing

e Spatial proprioception
To measure the net force or motion of an
appendage.
o Joint angle
o Force-torque sensors

e Proximity sensors
To explore the environment, and detect collisions.

o Contact (Whiskers & Antennae)
o Non contact (Infrared, Ultrasonic, ...)

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)

Tactile array

/ Sensor

Fingertip
force/torque
SOnSQr

\ Joint
angle/torque

/ SC€NSOrs

Dynamic
tactile
sensor

Point of

Robot hand with joint angle sensors.



Force and Load Sensing

To measure contact forces.

e Actuator Effort Sensors
Servo motors — motor current Multi-axis fingertip force-torque
Sensoryr.
Cables — cable tension

Dynamic
tactile
sensor

Tactile array

/ Sensor

Fingertip
force/torque
sensor

Point of
contact

e Force Sensors
o Mounted at the base joint, wrist, or distributed.

Joint
angle/torque
SENsors

Force sensors + fingertip

geometry to estimate contact

location.
Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



Dynamic Tactile Sensors

Fingertip
force/torque
sensor

To detect slips, and to sense textures and features.

angle/torque
Sensors

Ex. Capacitive tactile sensing (video)

Robot hand with dynamic tactile
sensor.

Rigid finger structure Accelerometer

Rubber skin Piezoelectric strip
. bh | (Stress rate sensor)
oam rubber | D\~ =/
(MeChaIlical iSOlatiOIl) '- Shielding mesh
Surface asperity Textured skin
—_— V

Cutkosky, Mark R., and John Ulmen. "Dynamic tactile sensing." In The
Human Hand as an Inspiration for Robot Hand Development, pp. 389-403.
Springer, Cham, 2014.

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)


http://handbookofrobotics.org/view-chapter/28/videodetails/14

Array SenSOrS S nsorpadsﬁ
Joint sensor\'
To sense shape and pressure. O

- e d

e Contact Location Sensors
o 2D switch array

P S . A Capacitive touch and joint angle
¢ ressure sensing Arrays sensors on a flexible circuit for

incorporation in a robotic hand.

Ex. The effect of twice dropping, and then gently placing, a two-gram weight
on a small capacitive tactile array. (video)

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)


http://handbookofrobotics.org/view-chapter/28/videodetails/15

Tactile Information Processing

Contact locations and forces

Manipulation \
Response \/ Exploration

Geometric and material

Event detection properties of the object

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



From sensed quantities to information

SENSOr

joint angle

actuator
effort

force/torque

HpL

array

dynamic

thermal, etc.

it

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)

high-level
iInformation

contact type I

- contact
motion

grasp forces I

object shape,
orientation

| object
identification
manipulation

hase




From sensed quantities to information

Sensor transformation

joint angle

actuator
effort

force/torque I
solid
mechanics

dynamic
filtering

kinematics,
geometry

dynamic

i

thermal, etc.

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)

high-level
iInformation

contact type I

- contact
motion

grasp forces I

object shape,
orientation

| object
identification

manipulation
hase



From sensed quantities to information high-leve

_ ) iInformation
sensor  transformation  'ow-level

information
joint angle contact type I
grasp
actuator , |
kinematics,

configuration
- contact I
oFfort m—, motion
contact
forces grasp forces I
force/torque '

contact
eomet

solid
mechanics

object shape,

orientation

surface
stresses

dynamic

| object
identification
manipulation

hase

contact impulse,
vibration

dynamic
filtering

thermal, etc.

surface properties
e.g thermal

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)




From sensed quantities to information high-leve

low-level iInformation
information

sensor  transformation interpretation

contact type I
object pose (

/
/
!
7
actuator , ,
kinematics,

\ contact
motion I
sl eomet
J Y contact
'\ forces V A grasp forces I
force/torque : PaN \

joint angle
] d grasp

confiquration

estimation

/ /

\ feature

"\ contact | extraction ‘
geomet | \
S:“d _ " object shape,
mechanics - :
surface surface fitting /) orientation
stresses N
o
dynamic :'l\ object
dynamic contact impulse, - eventut. identification I
filtering vibration | recognition }

thermal, etc. , ! manipulation
surface properties '}
hase
e.g thermal

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



Multimodal Representation for Manipulation

Reaching Alignment Insertion

Peg Insertion
RGB Images + End Effector F/T
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Learning a policy that Ieverages Vision & Touch

Encoder Output

End Effector
Displacemen ts




Encoders

Input
L

RGB image

> YV A A\ S | —
AN e A Y W & E
L J N/ N~ X e ot |
W - ! ., -
. -

Force data

Proprioception

robot
action

Representation Learning

~Bh—

Fusion

Decoders

Action-conditional

optical flow

.

O/1
— contact in
the next step?
O/1
time-aligned?



Learning a Policy based on this Representation

Input Encoder Policy Output

End Effector

Learned Representation TRPO Displacements




Multimodal
sensory
Inputs

Experimental setup

(N)

0 50 100 150 200 250 300 350
Time (s)

RGB force/torque  robot states
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Experimental setup

Training Testing

Peg geometry ‘ ‘ ‘ ‘ ‘
O C A H o

52



We evaluate our representation with policy learning

Episode O Episode 100
0% success rate 21% success rate

Q round




We efficiently learn policies in 5 hours

& ¢« 2 _ A

Episode 300 Episode 300 Episode 300

/3% success rate /1% success rate 92% success rate




Success Rate (%)

How Is each modality used?

100 ~orce Only: Can't find box

Q0
o

Image Only: Struggles with peg

60

alignment
40
20
0 Force & Image: Can learn full task
O .
Force Image Force & Image Completlon

Simulation Results
(Randomized box location)

55



Does our representation generalize to new geometries?



Does our representation generalize to new geometries?

92% Success Rate

B i ¢

’4
y 2
4 a:
il
*

Tested on A

Representation A

Policy A



Does our representation generalize to new policies?

92% Success Rate 62% Success Rate

Policy does not transfer

Tested on A Tested on

Representation A Representation A

Policy A Policy A

58



Does our representation generalize?

92% Success Rate 62% Success Rate 92% Success Rate

Policy does not transfer Representation transfers

Tested on A Tested on Tested on

Representation A Representation A Representation A
Policy A Policy A Policy



Our multimodal policy IS robust against sensor noise

Force Camera
Perturbation Occlusion



The policy is able to recover

B = S

from external pushes on the arm.

NEERNENRNL

P01V LR



1_ N

~Tagget Viovement
- \
e .IU%. \
=“SiThe policy is able to handlelsmall ;
o) sets'of the position ofithe box

==
it
\

(ﬁi)liﬁﬂ!? 1seen/locations)




Overview of our method

Self-supervised data collection Representation learning Policy learning

ORGB> Oforcw Orobot f (ORGB’ Ofarce’ Ombat) ﬂ(f (+)=a

[

[

[
100k data points 20 epochs on GPU Deep RL
90 minutes 24 hours 5 hours

Lee et al. Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal o

Representations for Contact-Rich Tasks. ICRA'19. Best Paper Award.



Lessons Learned

1. Self-supervision gives us rich learning objectives

2. Representation that captures concurrency and

dynamics can generalize across task instances

3. Our experiments show that multimodal representation

leads to learning efficiency and policy robustness

64



Force and Load Sensing

To measure contact forces.

e Actuator Effort Sensors
Servo motors — motor current Multi-axis fingertip force-torque
Sensoryr.
Cables — cable tension

Dynamic
tactile
sensor

Tactile array

/ Sensor

Fingertip
force/torque
sensor

Point of
contact

e Force Sensors
o Mounted at the base joint, wrist, or distributed.

Joint
angle/torque
SENsors

Force sensors + fingertip

geometry to estimate contact

location.
Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



Why Tactile Sensing?

Three main activities:
A. Manipulation
B. Exploration
C. Response

Manipulation: Grasp force
control; contact locations and
kinematics; stability assessment.

Exploration: Surface texture,
friction and hardness; thermal
properties; local features.

Response: Detection and reaction
to contacts from external agents.

Uses of tactile sensing in humans Uses of tactile sensing in robotics
Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



GelSight

* Optical sensor with
deformable elastomer
 Geometry sensing ]
« High spatial resolution /4 e
* Independent from optical y 4 AN
properties of the object s ¢ 5. Vi

(a) (b)

) object

[ oy elastomer
/ ,} -.\’r-’\.‘ ';’\_ \

/r //“}l'\\ N \

Figure 2. (a) basic principle of the Gelsight and the desktop design introduced in [7]. There are
four main components for the GelSight sensor: an sensing elastomer piece with the opaque reflective
membrane on top, supporting plate, LEDs which provide illumination, and the camera in the bottom
to capture the shaded images under the illumination from different directions; (b) shows the picture of
the sensor, and (c) shows the arrangement of the LEDs and camera when viewing from the top.

W. Yuan, S. Dong, E. H. Adelson, GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and

Force, 2017.
Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)






Challenges addressed

Normal Shear

1. Measurement of shear
force

2. Detecting contact area

3. Hardware optimization

Elastomer Elastomer

In-plane |

, Tilt
. . Torque Toraue
4. Fabrication & :u

Elastomer
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Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



Marker Motion for Force Measurement
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* Magnitude of the motion

Contact Surface Type Rigid Soft (Shore 00-10)

IS roughly proportional to
g y p p Contact area 30mm? Flat (32 cm?) 30mm? Flat (>2 cm?)

fO rce Using shape measurement  <0.05 N <0.05 N <0.05 N 0.08 N
Using marker measurement <0.05 N <0.05 N <0.05 N <0.05N

* In (b) when the shear
load increases until slip
occurs

Slide Credit: Allison Okamura and Mark Cutkoskyv (Stanford ME)



H Kinec

1= ceovenll iuage
aldaz chetling

THl  iesorranion

| GelSight
- Ulain bectil:

Targen chothing i nerares siee

Signal
form

GelSight:

heural \{et

©0CCo0)

‘DOCCCR)

Conve'utional

) §

J

.

Cooco0)

GoOCO0
b 'm‘. )

LCCCO0

-~
~
-
e
o~
e
-~
o
~
W
-~
~

: i

(CQUCOQ)

TTEEET

(CCQCC0)
(CeaCO0]

DOCCSO)

TR |

‘DO0GCA)

BooCCoO)

Fully Connected
Layers

4
g

Touch Sensing for Robotics - What’s next?

Active clothing perception

The goal of this project is to build a robot system that can
autonomously explore the properties of natural clothes. An
external Kinect sensor guides the robot to move to the proper
positions on the clothing for tactile exploration, and then the
robot squeezes the clothing with a GelSight finger. We applied
CNN to learn multiple clothing properties from the tactile data.
The tactile output was used to improve the robotic exploration

as well.

Deep grasping with vision and touch

We try to predict the grasping success through both vision and
tactile sensing using a deep neural network architecture. We
build a dataset of over 9,000 grasping trials on 106 different
objects. The experiment results show that incorporating tactile
sensors substantially improve grasping performance.

Improved design of fingertip GelSight sensor

We introduce a new design of the fingertip GelSight sensor for
robot grippers. The new design measures the geometry of the
contact surface with higher 3D precision, and the fabrication is
much easier with 3D printing. We publish the drawing and 3D
printing files of the sensor, with the hope of the sensor could be
accessible to more people.



Thank you for your Attention!

Monday: Prof. Monroe Kennedy on Dense Tact
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