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Wearable mechanical sensors for
healthcare, rehabillitation, and assistance

Purpose:

Monitor limb swelling (edema)

= Can affect limb function and threaten life
=  Warning sign for cardiac conditions, DVT, etc.

Mass General Hospital

Mark Bugnaski

MD Anderson Cancer Center



Soft, elastic sensors can sense deformations but
are not inherently selective or tunable




What I'll talk about: How | got from MEMS
to robotics

Dielectric Charging’f
in CMOS MEMS |

16 August 2013

Candidate: Kristen L. Dorsey

Committee:
Professor Gary Fedder (advisor)
Dr. Mohamed Abdel-Moneum (Intel)
Professor Maarten de Boer i §
Professor Tamal Mukherjee
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Charge and Built-in Voltage

» Trapped charge in
dielectrics

= Map charge to the
surface
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= Summarize charge
as built-in voltage, AV
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|. Wiebbler, et. al., “Parasitic charging of dielectric surfaces in capacitive MEMS” |. Sensors and Actuators A, 1998.
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Voltage Sensitivity + Transient Built-in Voltage
(i.e., spring softening) (e.g., trapped charge)

= Unstable Resonant
Frequency 10



Yes, My Dream Job Summer Internship!
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Oh [bleep], | think | want to be a professore

* Industry wasn’t what I wanted

* Didn’t have the publication
record I wanted for academia

= ...let’s do a postdoc!

12



The Plan: study frequency stabillity in
/different/ MEMS

M. Hodjat-Shamami and F. Ayazi, Microsystems and Nanoengineering, 2020
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When life gives you lemons...
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Template Printing

Chemical sensing
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Movin' on up, o the east side (of the US)

= Knew how to work with
silicones

= No cleanroom? No problem!

= Excited to work with ugrad
students

= Get to work on a “hot” topic

16



SCARS: A flexible, sensitive, robust strain sensor

O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature, 2020



Selective electrical contact between beams of a
erX|bIe carbon fiber serpentine fransduces strain
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Selective electrical contact between beams of a
flexible carbon fiber serpentine fransduces strain
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The sensor is modeled as a network of large fixed
and small variable resistors that represent contact
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O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature, 2020
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The resistance is funable through the CF geometry.
Strain sensitivity can be predicted from beam
bending + electrical model.
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The sensor is selective to strain over bending, torsion,
and pressure because contact is maintained
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The substrate stiffness and pre-stretch ratio permits
conftrol over sensor mechanical response
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The versatility of the transduction
methodolgy allows for a variety of
stretchable encapsulation
materials to be used, such as knit
textiles.

We incorporate these
textile-integrated sensors into a
custom smart sleeve.

O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature, 2020

Custom
Sleeve

Textile-Integrated Sensor
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Applications to edema robotics and healthcare

Textile-Integrated Sensor

-Detecting changes in limb
size with fine temporal
resolution

-Informing “high-risk” activities
that trigger edema episodes

-Determining when to seek
more aggressive treatment, or
when to apply active
compression or lymph
drainage techniques

Custom
Sleeve

O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature, 2020



SCARS: Selective contact sensors

O.A. Araromi, M.A. Graule, K.L. Dorsey, et al., Nature, 2020




Sensor and actuator properties can also be
reconfigured by reversible stiffness change




Problem: Liquid metals used iIn many soft sensors and
actuators have poor lifetime (~5 h) at high current

Before test
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K.L. Dorsey and N. Lazarus, Advanced Materials Technologies, 2021
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Studying samples at high currents shows voids and
buckling
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3 days after tes:c 6 days after test
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K.L. Dorsey and N. Lazarus, Advanced Materials Technologies, 2021 29



Studying samples at high currents shows voids and
buckling with development of hot spofts in wires

1 kAcm2 1 kAcm
Before test 3 days after test 6 days after test
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Failure could be caused by
electromigration or thermal exgc |
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Failure could be caused by
electromigration or thermal expansion

me with:
1 KAcm™ 1 kKAcm™ = 2kAcm2DC (112 s)
3 days atter test 6 days after test » Heat sink (138 s)

= Pelletier cooling (39900 s)
= 0.1 Hz sqr wave(50600 s)
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K.L. Dorsey and N. Lazarus, Advanced Materials Technologies, 2021 32



Failure is likely caused by expansion of

elastomer Failure time with:
= 2kAcm2DC (112 s)
Migitate failure by: = Heat sink (138 s)
* Increasing passive = Pelletier cooling (39900 s)
cooling = (0.1 Hz sqr wave(50600 s)
= Pulsing power -
= Avoid CTE mismatch T e T I
i / _q ve _
between elastomer and — . Jims = 1.4kAcm™
liquid metal E104
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K.L. Dorsey and N. Lazarus, Advanced Materials Technologies, 2021



Smith College for 6 years
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It's time for a change!
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Origami inspiration has been demonstrated in

Multi-axis twisting

many actuators and seniors v g
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Even with stretching, a tuning ratio of 1.8 exists in the
X-QXIs, but sensitivity relationship is inverted
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Dorsey et al., Multifunctional Materials, 2022



What do YOU want to know?e

tinyurl.com/doorcMay16



