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Choosing A Research Direction

n Solve a real problem

n Intellectually challenging ⇒ hardware and software

n Revisit and question conventional wisdom

n Potential to change the way people  design and program computer 
systems

n Industry is not already doing it and many may think it’s a bad idea



Back to the Mid 90’s

n Microprocessor performance boom
n Clock frequency increasing at 40% per year
n Single processor performance increasing at 50% per year
n Lots of computer architecture researchers trying to feed Intel new tricks for 

complex processor design
n Free lunch for software developers  (internet, GUIs, spreadsheets, multimedia)

n Clouds on the horizon
n Architecture trend: single processor performance tricks running out of steam 

and complexity rising
n IC Technology trend: Delay of the interconnect not scaling with smaller 

transistor sizes



Stanford Hydra Chip Multiprocessor (CMP)

n 4 simpler CPUs in same area as complex CPU
n Simpler to design and shorter wires
n Exploit explicit multi-thread parallelism
n Now need to write parallel programs!

n Shared cache communication on chip makes parallelism easier

1 Complex CPU

Cache Cache

4 Simpler CPUs

Long wire Short



Hydra vs. Complex CPU
n ILP only 

Þ CCPU 30-50% better than single 
Hydra processor

n ILP & fine thread 
Þ CCPU and Hydra comparable

n ILP & coarse thread 
Þ Hydra 1.5–2´ better

n “The Case for a CMP” ASPLOS ’96
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Parallel Software Development

n Writing parallel software is difficult
n Even with shared memory

n Software must be correct
n Controlling access to shared data ⇒ synchronization (locks)
n Races ⇒ incorrect program
n Deadlock ⇒ program hangs

n Software must perform well
n Find enough parallelism in algorithm
n Not too much synchronization
n Not too much communication

n The bottom line
n Millions of people can write decent sequential programs
n Few people can write correct parallel programs
n Tiny minority can write efficient and correct parallel programs



Compiler Limitations and Speculative Threads

n While (True) {
sentence = read();
if (!sentence) break;
err = parse (sentence);  // most of time spent here
if (err) {

print (sentence, err);
}

}

n Could you parallelize this loop?
n Could a compiler parallelize this loop?

n Compilers have to be conservative ⇒ “always”

n Hardware support for speculation
n Safety net so compilers can be aggressive in finding parallelism ⇒

“sometimes” instead of “always”



Dynamic Java Parallelization (JRPM)

n A complete system for dynamically parallelizing sequential Java 
programs
n JVM, compiler, runtime, architecture

n Easily exploit thread-level parallelism automatically without complex 
analysis
n Find parallelism using dynamic profiling
n Speculative threads execute in parallel safely

n Good performance
n 3-4x speedup on floating-point
n 2-3x speedup on multimedia
n 1.5-2.5x speedup on integer



Recent Speculative Thread Results

Ten hard to parallelize C++ benchmarks from SPEC 2006

T4: Compiling Sequential Code for Effective Speculative Parallelization in Hardware, 
Victor A. Ying, Mark C. Jeffrey, Daniel Sanchez. ISCA 2020



Changing Industry Practice

n Write papers

n Develop prototypes and give them away

n Give talks (Intel, Sun, SGI, DEC, HP, IBM)

n Not enough to change two multi-billion $ industries
n Single thread performance still improving
n No desire/ability for software industry to take on parallel programming
n Industry is naturally conservative

n Crossing the academia/industry boundary
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Afara WebSystems

n Founded in 1999
n Height of internet boom
n Large web sites running out of power and space
n Goal: Revolutionize internet data centers (multi-B $ market)
n Approach: 10x performance/watt with new microprocessor based on 

CMP

n Systems company
n Top team: Intel, Sun, Cisco, HP, Brocade, C-Cube, SGI
n Design silicon and build system
n Sell as appliance with software
n Higher margins than selling chips
n $100M to market: “Big-boy project”



Making Hardware Threads Cheap:
Niagara Approach

n Performance/watt and high throughput the design focus
n Commercial server applications
n Throughput more important than latency

n Many simple cores vs. few complex cores
n No branch prediction or fancy pipeline techniques
n Lower development cost, schedule risk with simple pipeline

n Microprocessor with 32 threads exploits TLP
n Memory and pipeline stall time hidden by multiple threads
n Shared cache allows efficient data sharing among threads

n Memory system designed for high throughput with cache misses
n Banked and highly associative cache
n High bandwidth interface to DRAM for cache misses



Afara WebSystems
n Founded in 1999

n Height of internet boom
n Large web sites running out of power and space
n Goal: Revolutionize internet data centers (multi-B $ market)
n Goal: Approach: 10x performance/watt with new microprocessor 

based on CMP

n Sold to Sun Microsystems in 2002
n Dot com bomb
n VCs wanted to cash-out
n Sun processor design lagging
n Most of the team moved to Sun to finish the design



Niagara 1 (UltraSPARC T1) Die

§ Features
§ 8 64-bit 4-way Multithreaded     
§ SPARC Cores
§16 KB, 4-way 32B line ICache 
per Core
§ 8 KB, 4-way 16B line write-
through DCache per Core
§Shared 3 MB, 12-way 64B line 
writeback L2 Cache
§ 4 144-bit DDR-2 channels
§ 3.2 GB/sec JBUS I/O

§ Technology
§ TI's 90nm CMOS Process
§ 63 Watts @ 1.2GHz/1.2V
§ Die Size: 379mm2

§ 279M Transistors
§ Flip-chip ceramic LGA 
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e-business Applications

Apache J2EE 
Java JVM

Oracle 9i

Web
Server Tier

Application
Server Tier

Database
Server Tier

• Web content
• Web2005

• Business logic
• JBB2005

• Persistent store
• TPC-C



Throughput Performance 
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Performance/Watt
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Dawning of the Era of CMPs (Multicore)
n Industry and other academics not keen on CMPs

n I got tenure for this work, but not everybody thought it was the right decision. Some 
thought industry would never pick up CMPs

n Uniprocessor performance scaling reaches limits
n Power consumption increasing dramatically
n Wire delays becoming a limiting factor
n instruction-level parallelism (ILP) in single programs is mined out

n Lesson: Innovation requires research courage
n Have to be willing to buck the conventional wisdom
n Good research requires risk taking

From Intel 
Developer 

Forum, 
September 

2004



Microprocessor Trends
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UltraSPARC T2 and T3

8 cores, 64 threads, 1.3GHz
65 nm, 2007

16 cores, 128 threads, 1.6GHz
45 nm, 2009

T2 T3



SPARC @ Oracle
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Era of Power Limited Computing

n Mobile
n Battery operated
n Passively cooled

n Data center
n Energy costs
n Infrastructure costs



Power and Performance

Specialization ⇒ better energy efficiency

Power = Joules
Op

×
Ops
second

FIXED

Energy
efficiency

Performance



Heterogeneous Parallel Architectures Today

Only way to get high 
performance and 
performance/watt

Cray
Jaguar

Sun  
T2

Nvidia
Fermi

Altera
FPGA



Heterogeneous Parallel Programming Challenge
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Programmability Chasm
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Programming Language



Performance

Productivity Generality

The Ideal Parallel Programming Language



Successful Languages

Performance

Productivity Generality



Domain Specific Languages

n Domain Specific Languages (DSLs) 
n Programming language with restricted expressiveness for a particular 

domain
n High-level, usually declarative, and deterministic
n Focused on productivity



Way Forward ⇒ Domain Specific  Languages

Domain
Specific 

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality



Benefits of High Performance DSLs

Productivity
•Shield average programmers from the difficulty of parallel 
programming

•Focus on developing algorithms and applications and not on low 
level implementation details

Performance
•Match high level domain abstraction to generic parallel execution 
patterns

•Restrict expressiveness to easily extract all available parallelism
•Use domain knowledge and semantics for static/dynamic 
optimizations

Portability and forward scalability
•DSL & Runtime can be evolved to take advantage of latest 
hardware features

•Applications remain unchanged
•Allows innovative HW without worrying about application portability



Heterogeneous Parallel Programming with DSLs
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Intelligence

Personal 
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Scaling the DSL Approach

n Many potential high-performance DSLs

n Enable smart CS graduates to easily create new DSLs
n Make optimization knowledge reusable
n Simplify the compiler generation process

n A few DSL developers enable many more DSL users



Delite: Common DSL Infrastructure
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Delite : Common DSL Infrastructure

Key elements
n DSLs embedded in Scala

n Domain specific optimization

n Parallel patterns: functional data 
parallel operations on collections 
(e.g. set, tables, arrays)

n General parallelism and locality 
optimizations

n Optimized mapping to HW targets

Opti{Wrangler, QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI HDL

Generic analyses
& 

transformations

parallel data Parallel 
patterns

Domain specific 
analyses & 

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n



Parallel Patterns

n Most data analytic computations including ML can be expressed as functional data 
parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

n Looping abstractions with extra information about parallelism and access patterns

13 8 4
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y
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combine all
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y = max(vector) 

3 8 … 4

f(3) f(8) f(4)
…
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OptiML

n Designed for iterative statistical inference
n e.g. SVMs, logistic regression, neural networks, etc.
n Dense/sparse vectors and matrices, message-passing graphs, training/test sets

n Mostly functional
n Data manipulation with classic functional operators (map, filter)
n ML-specific ones (sum, vector constructor, untilconverged)
n Math with MATLAB-like syntax (a*b, chol(..), exp(..))
n Mutation is explicit (.mutable) and last resort

n Runs anywhere
n Single source to multicore CPUs, GPUs, and clusters (via Delite)

OptiML: An Implicitly Parallel Domain-Specific 
Language for Machine Learning,  ICML 2011



MSM Builder Using OptiML
with Vijay Pande

!

Markov State Models 
(MSMs)
MSMs are a powerful means 
of modeling the structure 
and dynamics of molecular 
systems, like proteins 

x86 ASM

high prod, low perf

low prod, high perf

high prod, high perf



Today’s DSLs for ML
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Two Big Trends in Computing

n Moore’s Law is slowing down
n Dennard scaling is dead
n Computation is limited by power
n Conventional computer systems (CPU) stagnate

n Success of Machine Learning (ML)
n Incredible advances in image recognition, natural language processing,  

and knowledge base creation
n Society-scale impact: autonomous vehicles, scientific discovery, and 

personalized medicine
n Insatiable computing demands for training and inference

Demands a new approach to designing computer systems for ML



ML Applications are Dataflow

1000x Productivity
Google shrinks language translation code 
from 500k imperative LoC to 500 lines of dataflow (TensorFlow)

Weight

Input 
Data Conv Pool Conv Norm Sum

Weight



ML Dataflow Graphs into Parallel Patterns

Dataflow Graph Analyzer

Hierarchical Parallel Patterns

Input Data Output Data
GroupBy

Filter

Map

Reduce

Weight

Weight
Input 
Data Conv Pool Conv Norm Sum

Weight

SQL



Spatial: Software Defined Hardware IR

n IR for hierarchical pipeline dataflow
n Constructs to express:

n Parallel patterns as parallel and pipelined datapaths
n Explicit memory hierarchies
n Hierarchical control

n Allows high-level compilers and low-level progammmers
to focus on specifying parallelism and locality

D. Koeplinger et. al.,“Spatial: A Language and Compiler for Application Accelerators” PLDI 2018. 

spatial-lang.org



Tiled Dot Product
4/25/22

Reduce (+)

Reduce (+)

*

Map

Load tA, tB

vecA vecB

out

val output = vecA.Zip(vecB){(a,b) => a * b} Reduce{(a,b) => a + b} 

val vecA = DRAM[Float](N)
val vecB = DRAM[Float](N)
val out     = Reg[Float]

Reduce(N by B)(out) { i =>
val tA = SRAM[Float](B)
val tB = SRAM[Float](B)
val acc   = Reg[Float]

tA load vecA(i :: i+B)
tB load vecB(i :: i+B)

Reduce(B by 1)(acc){ j => 
tA(j) * tB(j)

}{a, b => a + b}
}{a, b => a + b}



val vecA = DRAM[Float](N)
val vecB = DRAM[Float](N)
val out     = Reg[Float]

Reduce(N by B)(out) { i =>
val tA = SRAM[Float](B)
val tB = SRAM[Float](B)
val acc   = Reg[Float]

tA load vecA(i :: i+B)
tB load vecB(i :: i+B)

Reduce(B by 1)(acc){ j => 
tA(j) * tB(j)

}{a, b => a + b}
}{a, b => a + b}

Tiled Dot Product

vecA vecB

Load vecA(i :: i+B) Load vecB(i :: i+B)

tA tB
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Reconfigurable Dataflow Architecture (RDA)

CPUs
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Plasticine: A Reconfigurable Dataflow Architecture (RDA)

Up to95x Perf.

Up to 77x Perf/W

vs. Stratix V FPGA

Parallel Patterns (Spatial)

Plasticine Architecture High Performance

Energy Efficiency

Tiled architecture with reconfigurable SIMD pipelines, 
distributed scratchpads, and statically programmed switches

Prabhakar, Zhang, et. al.  ISCA 2017

map filter

reduce

Key1 Key3Key2

groupBy

…



Relax, It’s Only Machine Learning

n Stochastic Gradient Descent (SGD)
n Key algorithm in ML training
n Time to accuracy = # itters (statiscal eff.)  x time per itter (hardware eff.)

n Relax synchronization: data races are better
n HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

n Relax cache coherence: incoherence is better
n [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

Better hardware efficiency
with negligible impact on model accuracy
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SambaNova Cardinal SN10

n First Reconfigurable Dataflow Unit (RDU)
n TSMC 7nm
n 40B transistors and 50 Km of wire
n 320 TFLOPS
n 320 MB on chip
n Direct interfaces to TBs off chip 



RDU Attributes

Tiled architecture with reconfigurable SIMD pipelines, distributed 
scratchpads, and programmed switches
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n Specialized compute and memory
n PCUs: SIMD pipeline
n PMUs: large scratchpad banks
n Efficient prefetching 

n Wide interconnect
n Vectorized datapath
n Static and dynamic network

n Spatial unrolling to exploit all parallelism
n Vectors
n Pipelines
n Spatial streams (Metapipelining)



Pattern Compute Unit (PCU)
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Pattern Memory Unit (PMU)
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One Kernel at a Time
CONVOLUTION GRAPH
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Dataflow Exploits Locality and Parallelism
CONVOLUTION GRAPH
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Spatial programming
Eliminates memory traffic and overhead

Metapipelining 
Exploits more parallelism



A Fundamentally New Software Stack for Dataflow

t1 = conv(in)
t2 = pool(t1)
t3 = conv(t2)
t4 = norm(t3)
t5 = sum(t4)

• Computation and memory access are coupled

• Traditional compilers map kernels to accelerator in 
time

• Communication through the memory hierarchy

• Kernel at at time optimization 

• Computation and memory access are decoupled

• Dataflow compilers map kernels to accelerator in 
time and in space 

• Program the communication between kernels

• Global model optimization

Time SambaFlow Compiler

Weight

Input 
Data Conv Pool Conv Norm Sum

Weight

Highly performant mapping



The Benefits of Dataflow Execution

A Full-stack Search Technique for Domain-Optimized Deep Learning Accelerators
Zhang et. al. ASPLOS 2022



DataScale for Terabyte Sized Complex Models

High Compute 
Capability

+

Dataflow Efficiency

+

Large off-chip
Memory Capacity

RDU

SN10-8R
Quarter Rack

12 TB

RDU0 RDU1 RDU2 RDU3 RDU4 RDU5 RDU6 RDU7

S
1.5TB Memory Per RDU

Up to 40x more memory than GPU systems



Train Large NLP Models

1T parameter NLP training with a small footprint and programming ease

Large Kernels
• To Hide Communication Costs
• Statistically Nonoptimal

Complex
System Engineering
To Enable Model 
Architecture Exploration

https://arxiv.org/pdf/2104.04473.pdf

Out-of-Box Models 
• Huggingface Models
• Write yours in Pytorch

Developer Efficiency
• Focus on ML-problems instead of 

System Engineering

High Accuracy Models
• No Compromise on Model 

Architecture required to hide 
System Deficiencies

https://arxiv.org/pdf/2104.04473.pdf


cWAE on SambaNova Accelerates COVID-19 Research
Algorithmic and infrastructure optimizations together yielding human impact

• Improve the efficiency of the drug 
discovery process

• The character-based Wasserstein 
autoencoder (cWAE) model learns 
faster on RDU
• Lower latency per mini-batch
• Pipelined training algorithm maintains 

model quality
• Accelerated time to train to 

convergence



True-Resolution Computer Vision

TILES ARE STREAMED 
THROUGH MODEL 
PIPELINE ON CHIP conv 3x3, ReLU

conv 1x1

copy and crop
max pool 2x2
up-conv 2x2

SAMBAFLOW
AUTOMATICALLY TILES THE 
INPUT IMAGE FOR DEEP 
LEARNING OPERATIONS 
AND HANDLES OVERLAPS 
BETWEEN TILES

Model is exposed through a simple API 
that works at any resolution



Record Accuracy High-Res Convolution Training
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World Record CosmicTagger Training Accuracy

90.23%
Accuracy



DLRM Inference Throughput and Latency 

20x Better Throughput and Latency Than A100



Making Parallelism Easy: We Can Have It All!

n Power

n Performance

n Programmability

n Portability

Accelerators
(GPU, FPGA, RDA)

High Performance DSLs
(OptiML, PyTorch, …)

High Level Compiler

Algorithms
(Hogwild!)

App Developer


