
Making Parallelism Easy:

My Stanford Odyssey

Kunle Olukotun
Stanford University

CS114, April 18, 2022

My Timeline

1970’s1960’s 1980’s 1990’s 2000’s 2010’s Today

London Nigeria Michigan CMP
TLS

Niagara
Trans. Mem

DSLs Plasticine + ML
SambaNova

The Research Pendulum Swings

Computer
Architecture

Hardware Software

My Timeline

1970’s1960’s 1980’s 1990’s 2000’s 2010’s Today

London Nigeria Michigan CMP Niagara
(Afara)

DSLs RDA

Stanford University

Choosing A Research Direction

n Solve a real problem

n Intellectually challenging ⇒ hardware and software

n Revisit and question conventional wisdom

n Potential to change the way people design and program computer
systems

n Industry is not already doing it and many may think it’s a bad idea

Back to the Mid 90’s

n Microprocessor performance boom
n Clock frequency increasing at 40% per year
n Single processor performance increasing at 50% per year
n Lots of computer architecture researchers trying to feed Intel new tricks for

complex processor design
n Free lunch for software developers (internet, GUIs, spreadsheets, multimedia)

n Clouds on the horizon
n Architecture trend: single processor performance tricks running out of steam

and complexity rising
n IC Technology trend: Delay of the interconnect not scaling with smaller

transistor sizes

Stanford Hydra Chip Multiprocessor (CMP)

n 4 simpler CPUs in same area as complex CPU
n Simpler to design and shorter wires
n Exploit explicit multi-thread parallelism
n Now need to write parallel programs!

n Shared cache communication on chip makes parallelism easier

1 Complex CPU

Cache Cache

4 Simpler CPUs

Long wire Short

Hydra vs. Complex CPU
n ILP only

Þ CCPU 30-50% better than single
Hydra processor

n ILP & fine thread
Þ CCPU and Hydra comparable

n ILP & coarse thread
Þ Hydra 1.5–2´ better

n “The Case for a CMP” ASPLOS ’96

co
m

pr
es

s

m
88

ks
im

eq
nt

ot
t

M
PE

G
2

ap
pl

u

ap
si

sw
im

to
m

ca
tv

pm
ak

e0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Complex CPU

Hydra 4 x simpler CPU

O
LT

P

Sequential Parallel

Parallel Software Development

n Writing parallel software is difficult
n Even with shared memory

n Software must be correct
n Controlling access to shared data ⇒ synchronization (locks)
n Races ⇒ incorrect program
n Deadlock ⇒ program hangs

n Software must perform well
n Find enough parallelism in algorithm
n Not too much synchronization
n Not too much communication

n The bottom line
n Millions of people can write decent sequential programs
n Few people can write correct parallel programs
n Tiny minority can write efficient and correct parallel programs

Compiler Limitations and Speculative Threads

n While (True) {
sentence = read();
if (!sentence) break;
err = parse (sentence); // most of time spent here
if (err) {

print (sentence, err);
}

}

n Could you parallelize this loop?
n Could a compiler parallelize this loop?

n Compilers have to be conservative ⇒ “always”

n Hardware support for speculation
n Safety net so compilers can be aggressive in finding parallelism ⇒

“sometimes” instead of “always”

Dynamic Java Parallelization (JRPM)

n A complete system for dynamically parallelizing sequential Java
programs
n JVM, compiler, runtime, architecture

n Easily exploit thread-level parallelism automatically without complex
analysis
n Find parallelism using dynamic profiling
n Speculative threads execute in parallel safely

n Good performance
n 3-4x speedup on floating-point
n 2-3x speedup on multimedia
n 1.5-2.5x speedup on integer

Recent Speculative Thread Results

Ten hard to parallelize C++ benchmarks from SPEC 2006

T4: Compiling Sequential Code for Effective Speculative Parallelization in Hardware,
Victor A. Ying, Mark C. Jeffrey, Daniel Sanchez. ISCA 2020

Changing Industry Practice

n Write papers

n Develop prototypes and give them away

n Give talks (Intel, Sun, SGI, DEC, HP, IBM)

n Not enough to change two multi-billion $ industries
n Single thread performance still improving
n No desire/ability for software industry to take on parallel programming
n Industry is naturally conservative

n Crossing the academia/industry boundary

My Timeline

1970’s1960’s 1980’s 1990’s 2000’s 2010’s Today

London Nigeria Michigan CMP Niagara
(Afara)

DSLs RDA
(SambaNova)

Afara WebSystems

n Founded in 1999
n Height of internet boom
n Large web sites running out of power and space
n Goal: Revolutionize internet data centers (multi-B $ market)
n Approach: 10x performance/watt with new microprocessor based on

CMP

n Systems company
n Top team: Intel, Sun, Cisco, HP, Brocade, C-Cube, SGI
n Design silicon and build system
n Sell as appliance with software
n Higher margins than selling chips
n $100M to market: “Big-boy project”

Making Hardware Threads Cheap:
Niagara Approach

n Performance/watt and high throughput the design focus
n Commercial server applications
n Throughput more important than latency

n Many simple cores vs. few complex cores
n No branch prediction or fancy pipeline techniques
n Lower development cost, schedule risk with simple pipeline

n Microprocessor with 32 threads exploits TLP
n Memory and pipeline stall time hidden by multiple threads
n Shared cache allows efficient data sharing among threads

n Memory system designed for high throughput with cache misses
n Banked and highly associative cache
n High bandwidth interface to DRAM for cache misses

Afara WebSystems
n Founded in 1999

n Height of internet boom
n Large web sites running out of power and space
n Goal: Revolutionize internet data centers (multi-B $ market)
n Goal: Approach: 10x performance/watt with new microprocessor

based on CMP

n Sold to Sun Microsystems in 2002
n Dot com bomb
n VCs wanted to cash-out
n Sun processor design lagging
n Most of the team moved to Sun to finish the design

Niagara 1 (UltraSPARC T1) Die

§ Features
§ 8 64-bit 4-way Multithreaded
§ SPARC Cores
§16 KB, 4-way 32B line ICache
per Core
§ 8 KB, 4-way 16B line write-
through DCache per Core
§Shared 3 MB, 12-way 64B line
writeback L2 Cache
§ 4 144-bit DDR-2 channels
§ 3.2 GB/sec JBUS I/O

§ Technology
§ TI's 90nm CMOS Process
§ 63 Watts @ 1.2GHz/1.2V
§ Die Size: 379mm2

§ 279M Transistors
§ Flip-chip ceramic LGA

SPARC
Core 1

SPARC
Core 3

SPARC
Core 5

SPARC
Core 7

D
D

R
2_

0
D

D
R

2_
1

D
D

R
2_

2
D

D
R

2_
3

L2 Data
Bank 0

L2 Data
Bank 1

L2 Data
Bank 3

L2 Data
Bank 2L2Tag

Bank 0
L2Tag
Bank 2

L2 Buff
Bank 0L2 Buff
Bank 1

CLK &
Test
Unit

DRAM

Ctl 0,2

DRAM

Ctl 1,3

CROSSBAR

JBUS

IO

Bridge
L2 Buff
Bank 2L2 Buff
Bank 3

FPU

SPARC
Core 0

SPARC
Core 2

SPARC
Core4

SPARC
Core 6

L2Tag
Bank 1

L2Tag
Bank 3

e-business Applications

Apache J2EE
Java JVM

Oracle 9i

Web
Server Tier

Application
Server Tier

Database
Server Tier

• Web content
• Web2005

• Business logic
• JBB2005

• Persistent store
• TPC-C

Throughput Performance

SPECintRate SPECFPRate SPECJBB05 SPECWeb05 TPC-C
0

1

2

3

4

5

6

7

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 P
en

tiu
m

 D

Power5+ Opteron Niagara

Performance/Watt

SPECintRate SPECFPRate SPECJBB05 SPECWeb05 TPC-C
0
1
2
3
4
5
6
7
8
9

10
11

Pe
rfo

rm
an

ce
/W

at
t

re
la

tiv
e

to
 P

en
tiu

m
 D

Power5+ Opteron Niagara

Dawning of the Era of CMPs (Multicore)
n Industry and other academics not keen on CMPs

n I got tenure for this work, but not everybody thought it was the right decision. Some
thought industry would never pick up CMPs

n Uniprocessor performance scaling reaches limits
n Power consumption increasing dramatically
n Wire delays becoming a limiting factor
n instruction-level parallelism (ILP) in single programs is mined out

n Lesson: Innovation requires research courage
n Have to be willing to buck the conventional wisdom
n Good research requires risk taking

From Intel
Developer

Forum,
September

2004

Microprocessor Trends












        
































Moore’s Law

Power Wall

Sequential performance
plateau

UltraSPARC T2 and T3

8 cores, 64 threads, 1.3GHz
65 nm, 2007

16 cores, 128 threads, 1.6GHz
45 nm, 2009

T2 T3

SPARC @ Oracle

16 x 3rd Gen
Cores

8MB L3
Cache

3.6 GHz

T5

2013

6 x 3rd Gen
Cores

48MB L3
Cache

3.6 GHz

M5

2013

16 x 2nd
Gen cores
6MB L2
Cache

1.7 GHz

T3

2009

12 x 3rd Gen
Cores

48MB L3
Cache

3.6 GHz

M6

2013

32 x 4th Gen
Cores

64MB L3
Cache

4.1 GHz
DAX1

M7

2015

8 x 3rd Gen
Cores

4MB L3
Cache

3.0 GHz

T4

2011

My Timeline

1970’s1960’s 1980’s 1990’s 2000’s 2010’s Today

London Nigeria Michigan CMP
(multicore)

Niagara
(Afara)

Domain
Specific

Languages

RDA
(SambaNova)

Era of Power Limited Computing

n Mobile
n Battery operated
n Passively cooled

n Data center
n Energy costs
n Infrastructure costs

Power and Performance

Specialization ⇒ better energy efficiency

Power = Joules
Op

×
Ops
second

FIXED

Energy
efficiency

Performance

Heterogeneous Parallel Architectures Today

Only way to get high
performance and
performance/watt

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

Heterogeneous Parallel Programming Challenge

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Artificial
Intelligence

Personal
Robotics

Data
Informatics

Scientific
Engineering

Applications

Programmability Chasm

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Altera
FPGA

MPI
PGAS

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Artificial
Intelligence

Personal
Robotics

Data
informatics

Scientific
Engineering

Applications

Ideal Parallel
Programming Language

Performance

Productivity Generality

The Ideal Parallel Programming Language

Successful Languages

Performance

Productivity Generality

Domain Specific Languages

n Domain Specific Languages (DSLs)
n Programming language with restricted expressiveness for a particular

domain
n High-level, usually declarative, and deterministic
n Focused on productivity

Way Forward ⇒ Domain Specific Languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Benefits of High Performance DSLs

Productivity
•Shield average programmers from the difficulty of parallel
programming

•Focus on developing algorithms and applications and not on low
level implementation details

Performance
•Match high level domain abstraction to generic parallel execution
patterns

•Restrict expressiveness to easily extract all available parallelism
•Use domain knowledge and semantics for static/dynamic
optimizations

Portability and forward scalability
•DSL & Runtime can be evolved to take advantage of latest
hardware features

•Applications remain unchanged
•Allows innovative HW without worrying about application portability

Heterogeneous Parallel Programming with DSLs

Artificial
Intelligence

Personal
Robotics

Data
informatics

Scientific
Engineering

Physics
(Liszt)

Data Analytics
(OptiQL)

Graph Alg.
(Green Marl)

Machine
Learning
(OptiML)

Statistics
(R)

Applications

Domain
Specific
Languages

Heterogeneous
Hardware

DSL
Compiler

New
Arch.

DSL
Compiler

DSL
Compiler

DSL
Compiler

DSL
Compiler

Scaling the DSL Approach

n Many potential high-performance DSLs

n Enable smart CS graduates to easily create new DSLs
n Make optimization knowledge reusable
n Simplify the compiler generation process

n A few DSL developers enable many more DSL users

Delite: Common DSL Infrastructure

Artificial
Intelligence

Personal
Robotics

Data
informatics

Scientific
Engineering

Physics
(Liszt)

Data Analytics
(OptiQL)

Graph Alg.
(Green Marl)

Machine
Learning
(OptiML)

Statistics
(R)

Applications

Domain
Specific
Languages

Heterogeneous
Hardware

New
Arch.

Delite DSL
Infrastructure

Parallel data
Parallel
patterns

Analyses
&

Transformations

Delite : Common DSL Infrastructure

Key elements
n DSLs embedded in Scala

n Domain specific optimization

n Parallel patterns: functional data
parallel operations on collections
(e.g. set, tables, arrays)

n General parallelism and locality
optimizations

n Optimized mapping to HW targets

Opti{Wrangler, QL, ML, Graph}

Optimized Code Generators

Scala C++ CUDA OpenCL MPI HDL

Generic analyses
&

transformations

parallel data Parallel
patterns

Domain specific
analyses &

transformationsdomain data

domain ops

DSL 1

•••
domain data

domain ops

DSL n

Parallel Patterns

n Most data analytic computations including ML can be expressed as functional data
parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

n Looping abstractions with extra information about parallelism and access patterns

13 8 4

f(3,8) f(1,4)

f(*,*)

y
Reduce

combine all
elements with f
(f is associative)

y = vector.sum
y = vector.product
y = max(vector)

3 8 … 4

f(3) f(8) f(4)
…

…y00 y01 yN0 yN2yN1

FlatMap
element-wise

function
≥0 values out
per element

SELECT * FROM vector
WHERE elem < 5

GroupBy
group elements

into buckets
based on key

3 8 … 4

3 6 9k0
k1

…

k2 1 4…
8 2 5…11

f(3) f(8) f(4)…
k0 k1 k2

vector.groupBy{e => e % 3}

Map
element-wise

function f

y = vector + 4
y = vector * 10

y = sigmoid(vector)

y

3 8 … 4

f(3) f(8) f(4)…

… yNy1y0

Zip
element-wise

function f
(multi-collection)

y = vecA + vecB
y = vecA / vecB

y = max(vecA,vecB)

…3 8 … 4 5 2 1

f(3,5)f(8,2) f(4,1)…

…y0 y1 yN

OptiML

n Designed for iterative statistical inference
n e.g. SVMs, logistic regression, neural networks, etc.
n Dense/sparse vectors and matrices, message-passing graphs, training/test sets

n Mostly functional
n Data manipulation with classic functional operators (map, filter)
n ML-specific ones (sum, vector constructor, untilconverged)
n Math with MATLAB-like syntax (a*b, chol(..), exp(..))
n Mutation is explicit (.mutable) and last resort

n Runs anywhere
n Single source to multicore CPUs, GPUs, and clusters (via Delite)

OptiML: An Implicitly Parallel Domain-Specific
Language for Machine Learning, ICML 2011

MSM Builder Using OptiML
with Vijay Pande

!

Markov State Models
(MSMs)
MSMs are a powerful means
of modeling the structure
and dynamics of molecular
systems, like proteins

x86 ASM

high prod, low perf

low prod, high perf

high prod, high perf

Today’s DSLs for ML

My Timeline

1970’s1960’s 1980’s 1990’s 2000’s 2010’s Today

London Nigeria Michigan CMP
(multicore)

Niagara Domain
Specific

Languages

Plasticine + ML
SambaNova

Two Big Trends in Computing

n Moore’s Law is slowing down
n Dennard scaling is dead
n Computation is limited by power
n Conventional computer systems (CPU) stagnate

n Success of Machine Learning (ML)
n Incredible advances in image recognition, natural language processing,

and knowledge base creation
n Society-scale impact: autonomous vehicles, scientific discovery, and

personalized medicine
n Insatiable computing demands for training and inference

Demands a new approach to designing computer systems for ML

ML Applications are Dataflow

1000x Productivity
Google shrinks language translation code
from 500k imperative LoC to 500 lines of dataflow (TensorFlow)

Weight

Input
Data Conv Pool Conv Norm Sum

Weight

ML Dataflow Graphs into Parallel Patterns

Dataflow Graph Analyzer

Hierarchical Parallel Patterns

Input Data Output Data
GroupBy

Filter

Map

Reduce

Weight

Weight
Input
Data Conv Pool Conv Norm Sum

Weight

SQL

Spatial: Software Defined Hardware IR

n IR for hierarchical pipeline dataflow
n Constructs to express:

n Parallel patterns as parallel and pipelined datapaths
n Explicit memory hierarchies
n Hierarchical control

n Allows high-level compilers and low-level progammmers
to focus on specifying parallelism and locality

D. Koeplinger et. al.,“Spatial: A Language and Compiler for Application Accelerators” PLDI 2018.

spatial-lang.org

Tiled Dot Product
4/25/22

Reduce (+)

Reduce (+)

*

Map

Load tA, tB

vecA vecB

out

val output = vecA.Zip(vecB){(a,b) => a * b} Reduce{(a,b) => a + b}

val vecA = DRAM[Float](N)
val vecB = DRAM[Float](N)
val out = Reg[Float]

Reduce(N by B)(out) { i =>
val tA = SRAM[Float](B)
val tB = SRAM[Float](B)
val acc = Reg[Float]

tA load vecA(i :: i+B)
tB load vecB(i :: i+B)

Reduce(B by 1)(acc){ j =>
tA(j) * tB(j)

}{a, b => a + b}
}{a, b => a + b}

val vecA = DRAM[Float](N)
val vecB = DRAM[Float](N)
val out = Reg[Float]

Reduce(N by B)(out) { i =>
val tA = SRAM[Float](B)
val tB = SRAM[Float](B)
val acc = Reg[Float]

tA load vecA(i :: i+B)
tB load vecB(i :: i+B)

Reduce(B by 1)(acc){ j =>
tA(j) * tB(j)

}{a, b => a + b}
}{a, b => a + b}

Tiled Dot Product

vecA vecB

Load vecA(i :: i+B) Load vecB(i :: i+B)

tA tB

j

x

tA(j..j+3) tB(j..j+3)

acc

+
i

out+

xxx
+

+

+

Reconfigurable Dataflow Architecture (RDA)

CPUs

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chip Number

0.1

1

10

100

1000

10000

En
er

gy
 E

ffi
ci

en
cy

 [G
O

PS
/W

]

CPUs+GPUs

1000x
GPU⦿

FPGA

❖CPU
more less not

programmable programmable programmable

✾
RDA

Plasticine: A Reconfigurable Dataflow Architecture (RDA)

Up to95x Perf.

Up to 77x Perf/W

vs. Stratix V FPGA

Parallel Patterns (Spatial)

Plasticine Architecture High Performance

Energy Efficiency

Tiled architecture with reconfigurable SIMD pipelines,
distributed scratchpads, and statically programmed switches

Prabhakar, Zhang, et. al. ISCA 2017

map filter

reduce

Key1 Key3Key2

groupBy

…

Relax, It’s Only Machine Learning

n Stochastic Gradient Descent (SGD)
n Key algorithm in ML training
n Time to accuracy = # itters (statiscal eff.) x time per itter (hardware eff.)

n Relax synchronization: data races are better
n HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

n Relax cache coherence: incoherence is better
n [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

Better hardware efficiency
with negligible impact on model accuracy

SambaNova Systems

Chris Ré
Professor CS

Stanford
University

Kunle
Olukotun

Professor EE/CS
Stanford

University

Rodrigo
Liang

CEO

Palo Alto
California

USA

2017
Founded the

company

ML/AI
Reconfigurable

Dataflow Architecure

350+
HW/SW

AI Engineers

SambaNova Cardinal SN10

n First Reconfigurable Dataflow Unit (RDU)
n TSMC 7nm
n 40B transistors and 50 Km of wire
n 320 TFLOPS
n 320 MB on chip
n Direct interfaces to TBs off chip

RDU Attributes

Tiled architecture with reconfigurable SIMD pipelines, distributed
scratchpads, and programmed switches

Coalescing
Unit

Coalescing
Unit

AG Address
Generation
Unit

S Switch PMU Pattern
Memory
Unit

PCU
Pattern
Compute
Unit

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

Coalescing
Unit

Coalescing
Unit

n Specialized compute and memory
n PCUs: SIMD pipeline
n PMUs: large scratchpad banks
n Efficient prefetching

n Wide interconnect
n Vectorized datapath
n Static and dynamic network

n Spatial unrolling to exploit all parallelism
n Vectors
n Pipelines
n Spatial streams (Metapipelining)

Pattern Compute Unit (PCU)

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

AG

AG

AG

AG

Coalescing
Unit

Coalescing
Unit

Coalescing
Unit

Coalescing
Unit

PCU

Pattern Memory Unit (PMU)

S SSS

S SSS

S SSS

S SSS

PMU

PMU

PMU

PMUPMU

PCU

PCU PCU

PCU

AG

AG

AG

AG

AG

AG

AG

AG

Coalescing
Unit

Coalescing
Unit

Coalescing
Unit

Coalescing
UnitPMU

One Kernel at a Time
CONVOLUTION GRAPH

Weights

Conv1 Pool Conv 2 SumSample Norm

Weights

Kernel-by-kernel
Bottlenecked by memory bandwidth and host overhead

Memory

Data &
WeightsResult

Memory

Data &
WeightsResult

Memory

Data &
WeightsResult

Memory

Data &
WeightsResult

Memory

Batch &
Weights

Memory

Result

Conv 1

Cache

Cores

Conv 2

Cache

Cores

Pool

Cache

Cores

Norm

Cache

Cores

Sum

Cache

Cores

Content
Switching

Content
Switching

Content
Switching

Content
Switching

Dataflow Exploits Locality and Parallelism
CONVOLUTION GRAPH

Weights

Conv1 Pool Conv 2 SumSample Norm

Weights

Pool

Conv 1 Conv 2

Pool

SumNorm Norm

Pool
Conv

Conv Norm

Sum

Weights
PMU

Conv

Weights
PMU

PMU PCU PMU PCU

PCU PMU PCU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PCU PMU

PCU PMU

PMU

PCU PMU

PMU PCU

PCU

PMU

PCU

PMU

PCU

PMU

PMU PCU

Sample 1

PCU PMU

PMU PCU

PCU PMU

PMU PCU

PMU PCU

PCU

PMU

PCU

PMU

PCU

PCU

Sample 2

Sample 3Sample 4

Sample 5Sample 6

Spatial programming
Eliminates memory traffic and overhead

Metapipelining
Exploits more parallelism

A Fundamentally New Software Stack for Dataflow

t1 = conv(in)
t2 = pool(t1)
t3 = conv(t2)
t4 = norm(t3)
t5 = sum(t4)

• Computation and memory access are coupled

• Traditional compilers map kernels to accelerator in
time

• Communication through the memory hierarchy

• Kernel at at time optimization

• Computation and memory access are decoupled

• Dataflow compilers map kernels to accelerator in
time and in space

• Program the communication between kernels

• Global model optimization

Time SambaFlow Compiler

Weight

Input
Data Conv Pool Conv Norm Sum

Weight

Highly performant mapping

The Benefits of Dataflow Execution

A Full-stack Search Technique for Domain-Optimized Deep Learning Accelerators
Zhang et. al. ASPLOS 2022

DataScale for Terabyte Sized Complex Models

High Compute
Capability

+

Dataflow Efficiency

+

Large off-chip
Memory Capacity

RDU

SN10-8R
Quarter Rack

12 TB

RDU0 RDU1 RDU2 RDU3 RDU4 RDU5 RDU6 RDU7

S
1.5TB Memory Per RDU

Up to 40x more memory than GPU systems

Train Large NLP Models

1T parameter NLP training with a small footprint and programming ease

Large Kernels
• To Hide Communication Costs
• Statistically Nonoptimal

Complex
System Engineering
To Enable Model
Architecture Exploration

https://arxiv.org/pdf/2104.04473.pdf

Out-of-Box Models
• Huggingface Models
• Write yours in Pytorch

Developer Efficiency
• Focus on ML-problems instead of

System Engineering

High Accuracy Models
• No Compromise on Model

Architecture required to hide
System Deficiencies

https://arxiv.org/pdf/2104.04473.pdf

cWAE on SambaNova Accelerates COVID-19 Research
Algorithmic and infrastructure optimizations together yielding human impact

• Improve the efficiency of the drug
discovery process

• The character-based Wasserstein
autoencoder (cWAE) model learns
faster on RDU
• Lower latency per mini-batch
• Pipelined training algorithm maintains

model quality
• Accelerated time to train to

convergence

True-Resolution Computer Vision

TILES ARE STREAMED
THROUGH MODEL
PIPELINE ON CHIP conv 3x3, ReLU

conv 1x1

copy and crop
max pool 2x2
up-conv 2x2

SAMBAFLOW
AUTOMATICALLY TILES THE
INPUT IMAGE FOR DEEP
LEARNING OPERATIONS
AND HANDLES OVERLAPS
BETWEEN TILES

Model is exposed through a simple API
that works at any resolution

Record Accuracy High-Res Convolution Training

69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

50
7

52
9

55
1

57
3

59
5

61
7

63
9

66
1

68
3

70
5

72
7

74
9

77
1

79
3

RDU | bs64 | Image:1280x2048 | lr3e-4 | Adaptive til ing

GPU | bs64 | Image:640x1024 | lr3e-4

World Record CosmicTagger Training Accuracy

90.23%
Accuracy

DLRM Inference Throughput and Latency

20x Better Throughput and Latency Than A100

Making Parallelism Easy: We Can Have It All!

n Power

n Performance

n Programmability

n Portability

Accelerators
(GPU, FPGA, RDA)

High Performance DSLs
(OptiML, PyTorch, …)

High Level Compiler

Algorithms
(Hogwild!)

App Developer

