Stanford | ENGINEERING

Electrical Engineering
Computer Science

Making Parallelism Easy:
My Stanford Odyssey

Kunle Olukotun
Stanford University

CS114, April 18, 2022

My Timeline

1960’s 1970’s 1980’s 1990’s 2000’s 2010’s Today
London Nigeria Michigan CMP Niagara DSLs Plasticine + ML

TLS Trans. Mem SambaNova

The Research Pendulum Swings

ﬂ —
7 I\
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
N / \ s
Q. &

Hardware ~ ~ « _ G - ==" Software

Computer
Architecture

My Timeline

1990’s

CMP

Stanford University

Choosing A Research Direction

m Solve a real problem

m Intellectually challenging = hardware and software

m Revisit and question conventional wisdom

m Potential to change the way people design and program computer
systems

m Industry is not already doing it and many may think it’s a bad idea

Back to the Mid 90’s

®m Microprocessor performance boom
m Clock frequency increasing at 40% per year
m Single processor performance increasing at 50% per year

m Lots of computer architecture researchers trying to feed Intel new tricks for
complex processor design

m Free lunch for software developers (internet, GUls, spreadsheets, multimedia)

m Clouds on the horizon

m Architecture trend: single processor performance tricks running out of steam
and complexity rising

m |C Technology trend: Delay of the interconnect not scaling with smaller
transistor sizes

Stanford Hydra Chip Multiprocessor (CMP)

Long wire
@ .

1 Complex CPU

m 4 simpler CPUs in same area as complex CPU
m Simpler to design and shorter wires
m Exploit explicit multi-thread parallelism

m Now need to write parallel programs!
m Shared cache communication on chip makes parallelism easier

Hydra vs. Complex CPU

Speedup

= N w
ST VO P ORI

o
LY

AN
J

9

(.11

(.11

compres

= Hydra 1.5-2x better
“The Case for a CMP” ASPLOS '96
| SIGARCH SIGPLAN @ SIGOPS
ASPLOS 2015
‘ Most Influential Paper Award
Kunle Olukotun, Basem A. Nayfeh,

m [LPonly

= CCPU 30-50% better than single
Hydra processor

m |LP & fine thread
= CCPU and Hydra comparable
ILP & coarse thread

M Hydra 4 x simpler CPU
B Complex CPU

Lance Hammond, Ken Wilson,

and Kunyung Chang

egntott
m88kS|m
apsi
MPEG2
applu
swim
tomcatv
OLTP
pmake

ASPLOS 1996 Paper Titled

Paral Iel “The Case for a Single-Chip Multiprocessor”

Parallel Software Development

m Writing parallel software is difficult
m Even with shared memory

m Software must be correct
m Controlling access to shared data = synchronization (locks)
= Races = incorrect program
m Deadlock = program hangs

m Software must perform well

m Find enough parallelism in algorithm
m Not too much synchronization
m Not too much communication

m The bottom line

= Millions of people can write decent sequential programs

m Few people can write correct parallel programs
= Tiny minority can write efficient and correct parallel programs

Compiler Limitations and Speculative Threads

m While (True) {
sentence = read();
if (!sentence) break;
err = parse (sentence); // most of time spent here
if (err) {

print (sentence, err);

m Could you parallelize this loop?
m Could a compiler parallelize this loop?
m Compilers have to be conservative = “always”

m Hardware support for speculation

m Safety net so compilers can be aggressive in finding parallelism =
“sometimes” instead of “always”

Dynamic Java Parallelization (JRPM)

B A complete system for dynamically parallelizing sequential Java
programs

m JVM, compiler, runtime, architecture

m Easily exploit thread-level parallelism automatically without complex
analysis
m Find parallelism using dynamic profiling
m Speculative threads execute in parallel safely

® Good performance
m 3-4x speedup on floating-point
m 2-3x speedup on multimedia
m 1.5-2.5x speedup on integer

Recent Speculative Thread Results

[11-core [4-core [16-core [64-core

13 49 14 41 11 37 19 2.0
8 | 15
S 6l |
§4 . 1.0
N, 05
o OE i TR S S 0.0 | | .
(a) Class 1 benchmarks (b) Class 2 benchmarks

Ten hard to parallelize C++ benchmarks from SPEC 2006

T4: Compiling Sequential Code for Effective Speculative Parallelization in Hardware,
Victor A. Ying, Mark C. Jeffrey, Daniel Sanchez. ISCA 2020

Changing Industry Practice

® Write papers
®m Develop prototypes and give them away

m Give talks (Intel, Sun, SGI, DEC, HP, IBM)

m Not enough to change two multi-billion S industries
m Single thread performance still improving
m No desire/ability for software industry to take on parallel programming
m Industry is naturally conservative

m Crossing the academia/industry boundary

My Timeline

2000’s
*

Niagara
(Afara)

Afara WebSystems \

m Foundedin 1999
m Height of internet boom
m Large web sites running out of power and space
= Goal: Revolutionize internet data centers (multi-B S market)

m Approach: 10x performance/watt with new microprocessor based on
CMP

m Systems company
m Top team: Intel, Sun, Cisco, HP, Brocade, C-Cube, SGI
m Design silicon and build system
= Sell as appliance with software
m Higher margins than selling chips
$100M to market: “Big-boy project” ; 7

v,

r Afara

WebSystems

Making Hardware Threads Cheap:
Niagara Approach

m Performance/watt and high throughput the design focus
m Commercial server applications
m Throughput more important than latency

m Many simple cores vs. few complex cores
m No branch prediction or fancy pipeline techniques
m Lower development cost, schedule risk with simple pipeline

m Microprocessor with 32 threads exploits TLP
m Memory and pipeline stall time hidden by multiple threads
m Shared cache allows efficient data sharing among threads

m Memory system designed for high throughput with cache misses
m Banked and highly associative cache
m High bandwidth interface to DRAM for cache misses

Afara WebSystems \

® Founded in 1999 \\

m Height of internet boom
m Large web sites running out of power and space
m Goal: Revolutionize internet data centers (multi-B S market)

m Goal: Approach: 10x performance/watt with new microprocessor
based on CMP

® Sold to Sun Microsystems in 2002

m Dot com bomb

m VCs wanted to cash-out
m Sun processor design lagging
m Most of the team moved to Sun to finish the design

Niagara 1 (UItraSPARC T1) Die

Features

= 8 64-bit 4-way Multithreaded

SPARC Cores
=16 KB, 4-way 32B line ICache
per Core
= 8 KB, 4-way 16B line write-
through DCache per Core
=Shared 3 MB, 12-way 64B line
writeback L2 Cache
= 4 144-bit DDR-2 channels
= 3.2 GB/sec JBUS I/0O

Technology
= TI's 90nm CMOS Process
= 63 Watts @ 1.2GHz/1.2V
= Die Size: 379mm?
= 279M Transistors
= Flip-chip ceramic LGA

e-business Applications

Web Application Database
Server Tier Server Tier Server Tier

J2EE Oracla 9

et et ek

Java JVIVI

Apache

 Web content e Business logic » Persistent store
* Web2005 « JBB2005 « TPC-C

Throughput Performance

T

Bl Power5+ [l Opteron B Niagara

(&)

I

w

Performance relative to Pentium D
N

—
[

T

SPECintRate SPECFPRate SPECJBB05 SPECWeb05 TPC-C

Performance/Watt

—
—

m D
—
o

il

| B Power5+ [Opteron B Niagara

Performance/Watt relative to Pentiu
- N W A O1 O N oo

SPECintRate SPECFPRate @SPECJBB05 | SPECWeb05 TPC-C

T

Dawning of the Era of CMPs (Multicore)

B Industry and other academics not keen on CMPs
m | got tenure for this work, but not everybody thought it was the right decision. Some
thought industry would never pick up CMPs
®m Uniprocessor performance scaling reaches limits
m Power consumption increasing dramatically
m Wire delays becoming a limiting factor
m instruction-level parallelism (ILP) in single programs is mined out

The Right Hand Turn: From Intel

» Move away from frequency as Dﬁg’f&‘r’]‘q’er

performance September
2004

* Multi— everywhere; MT, CMP

Lesson: Innovation requires research courage
m Have to be willing to buck the conventional wisdom
m Good research requires risk taking

Microprocessor Trends

Moore’s Law | Transistors
(Thousands)

Sequential performance
plateau

Single-Thread
Performance

(SpeclINT)

Frequency
(MHz)

Typical Power
(Watts)

Number
of Cores

x__— Power Wall

1075 1980 1985 1990 1995 2000 2005 2010 2015

UltraSPARC T2 and T3

SRARTRS LD
o

! I R I Y 1
—

Q;‘ P

Core 7-'

g " = :
SPARCS ; : i ',p’r'

— i

8 cores, 64 threads, 1.3GHz 16 cores, 128 threads, 1.6GHz
65 nm, 2007 45 nm, 2009

SPARC @ Oracle

8 x 37 Gen 16 x 3@ Gen 6 x 3 Gen 12 x 314 Gen 32 x 4t Gen
Gen cores Cores Cores Cores Cores Cores
6MB L2 4MB L3 8MB L3 48MB L3 48MB L3 6?:';4cBhé3
Cache Cache Cache Cache Cache 4.1 GHz
1.7 GHz 3.0 GHz 3.6 GHz 3.6 GHz 3.6 GHz DAX1

My Timeline

2010’s
*

Domain
Specific
Languages

Era of Power Limited Computing

m Mobile m Data center
m Battery operated m Energy costs
m Passively cooled m Infrastructure costs

i)

Power and Performance

Energy Performance
efficiency
Joules Ops
Power = X P
second

1 1

Specialization = better energy efficiency

Heterogeneous Parallel Architectures Today

Only way to get high
performance and
performance/watt

Heterogeneous Parallel Programming Challenge

Applications

Scientific
Engineering

Artificial
Intelligence

Personal
Robotics

Data

Informatics

Pthreads
OpenMP
CUDA Nvidia
OpenCL Fermi

Verilog
VHDL

Altera
FPGA

MPI
PGAS

Programmability Chasm

Applications

Scientific OpenMP !
Engineering

Artificial CUDA | Nvidia
Intelligence OpenCL | Fermi

Personal
Robotics
Data
informatics

Altera
FPGA

L\zﬁ;’ < \ Verilog
4 et VHDL
B

MPI
PGAS

The ldeal Parallel Programming Language

Performance

Productivity Generality

Successful Languages

Performance

Productivity | Generality

@, python %

Domain Specific Languages

m Domain Specific Languages (DSLs)

m Programming language with restricted expressiveness for a particular
domain

m High-level, usually declarative, and deterministic
m Focused on productivity

MATLAB ——
JpenGL. @

Way Forward = Domain Specific Languages

Performance
. (Heterogeneous Parallelism)

Domain
Specific
Languages

SQL. e S

L/t =

MATLAB - Java

Productivity Generality

@, python %

Benefits of High Performance DSLs

Productivity

eShield average programmers from the difficulty of parallel
programming

e Focus on developing algorithms and applications and not on low
level implementation details

Performance

e Match high level domain abstraction to generic parallel execution
patterns

e Restrict expressiveness to easily extract all available parallelism

eUse domain knowledge and semantics for static/dynamic
optimizations

o
a - -
s Portability and forward scalability
" *DSL & Runtime can be evolved to take advantage of latest
I hardware features
= e Applications remain unchanged
e Allows innovative HW without worrying about application portability
A : 4

Heterogeneous Parallel Programming with DSLs

Applications Scientific
Engineering

Artificial Personal Data
Intelligence Robotics informatics

Domain Machi
Specific Statistics Physics Data Analytics Graph Alg. N ezcm'irr“‘;
Languages (R) (Liszt) (OptiQL) (Green Marl) (OptiML)
DSL DSL DSL DSL DSL
Compiler Compiler Compiler Compiler Compiler
Heterogeneous

Hardware

Scaling the DSL Approach

m Many potential high-performance DSLs

m Enable smart CS graduates to easily create new DSLs

m Make optimization knowledge reusable
m Simplify the compiler generation process

m A few DSL developers enable many more DSL users

Delite: Common DSL Infrastructure

Applications Scientific
Engineering

Artificial Personal Data
Intelligence Robotics informatics

Domain Machi
Specific Statistics Physics Data Analytics Graph Alg. N ezcm'irr“‘;
Languages (R) (Liszt) (OptiQL) (Green Marl) (OptiML)
Delite DSL Parallel data i Analyses
Parallel \J &
Infrastructure ——— patterns Transformations
Heterogeneous

Hardware

Delite : Common DSL Infrastructure

DSL Opti{Wrangler, QL, ML, Graph}
User o o O

DSL 1 DSL n
. . Domain specific
d domain ops
DSL __ omain ops coe - p analyses &
Developer domain data domain data transformations

\l

parallel data Paralle
patterns]
HIEEEER Generic analyses
&
transformations
Delite __
Framework Ny

Optimized Code Generators
4 4 4 U U {

Key elements

DSLs embedded in Scala

Domain specific optimization

Parallel patterns: functional data
parallel operations on collections

(e.g. set, tables, arrays)

General parallelism and locality
optimizations

Optimized mapping to HW targets

Parallel Patterns

m Most data analytic computations including ML can be expressed as functional data
parallel patterns on collections (e.g. sets, arrays, tables, n-d matrices)

m Looping abstractions with extra information about parallelism and access patterns

3 8 M43 8 M4 NisiR2imu W 3 8 M4 3 8 M4
S~

f(3) f(8) f(4) f(3 8) f(1 4) f(3) (8) f(4) f(3)(f(8) f(4)
. f(3,5 . ol
(3,5f(8,2) (f(4,1) f(* *) R, I X Ig/ ¢/ w
yo Y1 Yn Yo Y1 M Yn Yoo Yor I Yno YN Yo k 3 6 ! 9
ﬂ 8 2 11M 5
Map Zip Reduce FlatMa 1M 4
element-wise element-wise combine all element-wise GroupBy
function f function f elt.ements _W'_th f function group elements
(multi-collection) (f is associative) 20 values out into buckets
per element based on key
y = vector + 4 y = vecA + vecB y = vector.sum SELECT * FROM vector vector.groupBy{e => e % 3}
y = vector * 10 y = vecA / vecB y = vector.product WHERE elem < 5
y = sigmoid(vector) y = max(vecA,vecB) y = max(vector)

o t. M L OptiML: An Implicitly Parallel Domain-Specific
p ' Language for Machine Learning, ICML 2011

m Designed for iterative statistical inference
m e.g. SVMs, logistic regression, neural networks, etc.
m Dense/sparse vectors and matrices, message-passing graphs, training/test sets

® Mostly functional
m Data manipulation with classic functional operators (map, filter)

m ML-specific ones (sum, vector constructor, untilconverged)
m Math with MATLAB-like syntax (a*b, chol(..), exp(..))
m Mutation is explicit (.mutable) and last resort

® Runs anywhere
m Single source to multicore CPUs, GPUs, and clusters (via Delite)

MSM Builder Using OptiML

with Vijay Pande

Markov State Models
(MSMs)

MSMs are a powerful means
of modeling the structure
and dynamics of molecular
systems, like proteins

MSMbuilder Kinetic Clustering high prod, high perf]

OptiML

cosocas SR~ 10w prod, high perf |
Python k[high prod, low perf]

0 500 1000 1500 2000 2500 3000 3500 4000

Relative Speed

Today’s DSLs for ML

0

TensorFlow

O PyTorch

My Timeline

Today

>

Plasticine + ML
SambaNova

Two Big Trends in Computing

m Moore’s Law is slowing down
m Dennard scaling is dead

m Computation is limited by power
m Conventional computer systems (CPU) stagnate

m Success of Machine Learning (ML)

m Incredible advances in image recognition, natural language processing,
and knowledge base creation

m Society-scale impact: autonomous vehicles, scientific discovery, and
personalized medicine

m Insatiable computing demands for training and inference

Demands a new approach to designing computer systems for ML

ML Applications are Dataflow

1000x Productivity
Google shrinks language translation code

from 500k imperative LoC to 500 lines of dataflow (TensorFlow)

ML Dataflow Graphs into Parallel Patterns

PYTHRCH J ¥+ TensorFlow J | SQL J

r r
N N g’

Dataflow Graph Analyzer

GroupBy

Input Data . Output Data
Filter

Hierarchical Parallel Patterns

Spatial: Software Defined Hardware IR

m |R for hierarchical pipeline dataflow

m Constructs to express:
Parallel patterns as parallel and pipelined datapaths
Explicit memory hierarchies

Hierarchical control

m Allows high-level compilers and low-level progammmers
to focus on specifying parallelism and locality

spatial-lang.org

D. Koeplinger et. al.,““Spatial: A Language and Compiler for Application Accelerators” PLDI 2018.

4/25/22

Tiled Dot Product

output = vecA.

vecA

Load tA, tB

out

(vecB){(a,b) => a * b}

{(a,b) => a + b}

val vecA = DRAM[Float](N)
val vecB = DRAM[Float](N)
val out = Reg[Float]

Reduce(N by B)(out) { i =>

val tA = SRAM[Float](B)
val tB = SRAM[Float](B)
val acc = Reg[Float]

tA load vecA(i :: i+B)
tB load vecB(i :: i+B)

Reduce(B by 1)(acc){ j =»>
tA(J) * tB(J)
}{a, b => a + b}

}a, b => a + b}

Tiled Dot Product

val vecA = DRAM[Float](N) vecA @ vecB
val vecB = DRAM[Float](N) | .|
val out = Reg[Float] Load vecA(i :: i+B) Load vecB(i :: i+B)
] 1
Reduce(N by B)(out) { i => tA tB
val tA = SRAM[Float](B) - @ -
val tB = SRAM[Float](B) J, I 1 |
val acc = Reg[Float] tA(j..j+3) tB(j..j+3)
> ' I ——
tA load vecA(i :: i+B) t: t: t: t:
tB load vecB(i :: i+B) T 1L
+ -+
Reduce(B by 1)(acc){ j => T
tA(3) * tB(J) o 1
}{a, b => a + b}

}a, b => a + b} E+_.J

Reconfigurable Dataflow Architecture (RDA)

10000

=
o
o
o

100

=
o

Energy Efficiency [GOPS/W]

[EEY

not
programmable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Chip Number

less

more
programmable

programmable

0.1

Plasticine: A Reconfigurable Dataflow Architecture (RDA)

Parallel Patterns (Spatial)

ritegp e

U.T.T.TJI'.U.I»

Gl
groupBy

Plasticine Architecture

AG

AG

Unit

Coalescing 1
Unit m Generation

Unit

¢:> AG los s s
Coalescing PMU Pev e
Unit
¢:> AG [S s S
A 5
J PCU PMU PCU
Y
(::t) AG l& S s s
4
Coalescing
Unit PMU pcu PMU
Q::) AG lo s s s
" Address
Coalescing S | Switch PMU

AG

Pattern
Memory
Unit

AG

Coalescing
Unit

Coalescing
Unit

PCU

Pattern
Compute
Unit

Tiled architecture with reconfigurable SIMD pipelines,
distributed scratchpads, and statically programmed switches

Prabhakar, Zhang, et. al. ISCA 2017

High Performance

Energy Efficiency

Up to 95X Perf.

» Up to 77X Perf/W

vs. Stratix V FPGA

Relax, It’s Only Machine Learning

m Stochastic Gradient Descent (SGD)

m Key algorithm in ML training
m Time to accuracy = # itters (statiscal eff.) x time per itter (hardware eff.)

m Relax synchronization: data races are better
m HogWild! [De Sa, Olukotun, Ré: ICML 2016, ICML Best Paper]

m Relax cache coherence: incoherence is better
m [De Sa, Feldman, Ré, Olukotun: ISCA 2017]

Better hardware efficiency

with negligible impact on model accuracy

SambaNova Systems

2017 Palo Alto ML/AI 350+
Founded the California Reconfigurable HW/SW
company USA Dataflow Architecure Al Engineers

Rodrigo
Liang

Kunle Chris Ré

Olukotun Professor CS
Professor EE/CS Stanford
Stanford University

University

SambaNova Cardinal SN10

First Reconfigurable Dataflow Unit (RDU)

TSMC 7nm o
SambaNova

40B transistors and 50 Km of wire @s vSTEMS iova

320 TFLOPS CARDINAL

320 MB on chip

Direct interfaces to TBs off chip

RDU Attributes

Tiled architecture with reconfigurable SIMD pipelines, distributed

scratchpads, and programmed switches m Specialized compute and memory
1 1 = PCUs: SIMD pipeline
Aad ; . ‘s_} ______ = PMUs: large scratchpad banks

= Efficient prefetching

S 5 S = Wide interconnect
= Vectorized datapath
= Static and dynamic network

Coalescing
Unit

m Spatial unrolling to exploit all parallelism

Coalescing

- = Vectors
A B s | 5 peee = Pipelines
-TJ —J —J = Spatial streams (Metapipelining)

Coalescing Coalescing AG Address Switch Pattern
Unit Unit Generation Memory

Unit Unit

Pattern
Compute
Unit

Pattern Compute Unit (PCU)

/ Scalar
/ Outputs
/
/
/
/
/
PCU
\
\
\
\
1 Control
\ Qutputs
\

Pattern Memory Unit (PMU)

PMU

Scalar
Inputs

FU

FU

FU

Scrotchiod
Buffering

SRAM

Scalar
QOutputs

Vector
Qutputs

Control
Outputs

One Kernel ata Time

CONVOLUTION GRAPH

[Weights |
[o R . RN .. R W

Kernel-by-kernel
Bottlenecked by memory bandwidth and host overhead

Coer | Do]| []
1m 0000000 00000000 0000000 1 0000000

Dataflow Exploits Locality and Parallelism

CONVOLUTION GRAPH
_Weights |

[K. BEERN ... K. B

Spatial programming Meiapipelining -
Eliminates memory traffic and overhead Exploits more parallelism

= S |SambaN
ampbdaNova®
% j S Yo Se e E M S
CARDINAL
= SN10
L=

20N3-PRO1
18K977 42

1888
AHW34W0100065

A Fundamentally New Software Stack for Dataflow

| oo N oot N
- | e
tl = conv(in) PYTHRCH J fTensorFlowJ

t2 = pool(tl) - ;
Time t3 = conv(t2) SambaFlow Compiler
t4 = norm(t3)
¢+ £t5 = sum(t4d)

High perforcqi mlng
Vv s A -ONVEs 3

S| A\
—
@
S| s $

+ Computation and memory access are decoupled

Computation and memory access are coupled

Traditional compilers map kernels to accelerator in

fime « Dataflow compilers map kernels to accelerator in

time and in space

Communication through the memory hierarchy * Program the communication between kernels

Kernel at at time optimization . Global model optimization

The Benefits of Dataflow Execution

B FAST Fusion Datapath W Scheduling W TPUv3 Baseline

llli

— E T
EfficientNet-BO B3 B4 B7 ResNet-50 OCR-RPN OCR-Rec BERT-128 BERT-1024
Figure 15: Performance breakdown of each component of
FAST relative to a TPU-v3 single TensorCore baseline. Im-

provements are additive; for example, FAST fusion includes
both datapath and scheduling improvements.

Speedup vs TPUv3

O = N W OO N

A Full-stack Search Technigue for Domain-Optimized Deep Learning Accelerators
Zhang et. al. ASPLOS 2022

DataScale for Terabyte Sized Complex Models

High Compute 2

Capability oS °
SarmbaNovar 3
+ = SYSTEWMS 8

- CARDINAL

SN0 RDU
| 90N3-PROY
18%977 A2

i 1888
| AMW3AW0100065

Dataflow Efficiency

81093040

SN10-8R
Quarter Rack

Large off-chip
127TB

Memory Capacity

1.5TB Memory Per RDU

Up to 40x more memory than GPU systems

Train Large NLP Models

1T parameter NLP training with a small footprint and programming ease

530B 128 20480 105 529.6 280
1T 160 25600 128 1008.0 512

Pipeline MP partition #1

hitps://arxiv.org/pdf/2104.04473.pdf

https://arxiv.org/pdf/2104.04473.pdf

cWAE on SambaNova Accelerates COVID-19 Research

Algorithmic and infrastructure optimizations together yielding human impact

. |mprove ‘I'he efficiency Of The drug WAE Training on 1.613 Billion Enamine Mpro_inhib dataset

1.0

discovery process — B512Train

—— B512Val
—— B4KTrain
0.8 —— B4Kval
—— B4KLinearLRTrain
—— B4KLinearLRVal

* The character-based Wasserstein
autoencoder (CWAE) model learns
faster on RDU

* Lower latency per mini-batch

* Pipelined training algorithm maintains
model quality

« Accelerated fime fo train to

convergence
. Lawrence 00
Livermore 0 10 20 30 40 50 60 70 80
National Epochs
Laboratory

0.6

0.4

0.2

Reconstruction error (lower is better)

True-Resolution Computer Vision

AUTOMATICALLY TILES THE
INPUT IMAGE FOR DEEP
LEARNING OPERATIONS

| b
e AND HANDLES OVERLAPS

I Jrj'I, -+ BETWEEN TILES

E,

model = daas_client.

segments = model. (1mage)

("unet', resolution)

OuTPUT
= | SEGMENTATION
MAP

TILES ARE STREAMED]
THROUGH MODEL 2 22 2 52
: ' conv 3x3, RelLU

PIPELINE ON CHIP — copy and crop

max pool 2x2
f up-conv 2x2
= conv 1xl

Model is exposed through a simple API
that works at any resolution

Record Accuracy High-Res Convolution Training

90.23%

AcCcuracy

IEEE Xplore®

EDITORS:

DEPARTMENT: NOVEL ARCHITECTURES

Accelerating Scientific Applications With
SambaNova Reconfigurable Dataflow
Architecture

Murali Emani ., Venkatram Vishwanath, Corey Adams, Michael E. Papka, and Rick Stevens, Argonne National
Laboratory, Lemont, IL, 60439, USA

World Record CosmicTagger Training Accuracy

0.5

0.4

0.3

0.2

0.1

0

—RDU | bs64 | Image:1280x2048 | Ir3e-4 | Adaptive tiling

GPU | bs64 | Image:640x1024 | Ir3e-4

— MmN
N < O

Argonne &

NATIONAL LABORATORY

111
133
155

177
199
221

243
265
287
309
331
353
375
397
419
441
463
485
507
529
551
573
595
617
639
661
683
705
727
749
771
793

69

DLRM Inference Throughput and Latency

DLRM Inference Latency

DLRM Inference Throughput

—-e—RDU —e—AI100 V100

0.1

0.01

Throughput (M s/s)s or:

0001 @ 0.4

e RDU e=@=A100 V100 0.2

0.0001 .
1 2 4 8 16 32 64 128 256 512 102420484096

.] 2 4 8 16 32 64 128 256 512 102420484096
Batch Size

Batch Size

2 OX Better Throughput and Latency Than A100

Making Parallelism Easy: We Can Have It All!

Algorithms
(Hogwild!)

m Power
App D loper

m Performance
High Performance DSLs
. (OptiML, PyTorch, ...)
m Programmability

= Portability High Le@ompiler

Accelerators
(GPU, FPGA, RDA)

