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Abstract—For any d,n > 2 and 1/(min{n,d})***° < ¢ <
1, we show the existence of a set of n vectors X C R? such
that any embedding f : X — R™ satisfying

o,y € X, (1-e)llz—ylz < I (@)~ f@)lz < +e)llz—yl:

must have
m = Qe *lgn).

This lower bound matches the upper bound given by the
Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower
bound holds for nearly the full range of ¢ of interest, since there
is always an isometric embedding into dimension min{d, n}
(either the identity map, or projection onto span(X)).

Previously such a lower bound was only known to hold
against linear maps f, and not for such a wide range of
parameters ¢,n,d [LN16]. The best previously known lower
bound for general f was m = Q(e 2lgn/lg(1/¢)) [Wel74],
[Alo03], which is suboptimal for any ¢ = o(1).
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Johnson and Lindenstrauss [JL84], it was proven that for any
g < 1/2, there exists n point sets X C R" for which any em-
bedding f : X — R™ providing (1) must have m = Q(Ign).
This was later improved in [Alo03], which showed the exis-
tence of an n point set X C R"™, such that any f providing
(1) must have m = Q(min{n,e21gn/lg(1/¢)}), which
falls short of the JL lemma for any € = o(1). This lower
bound can also be obtained from the Welch bound [Wel74],
which states €2 > (1/(n — 1))(n/(™*F7") = 1) for any
positive integer k, by choosing 2k = [lgn/lg(1/e)]. The
lower bound can also be extended to hold for any n < e ¢
for some constant ¢ > 0.

Our Contribution: In this paper, we finally settle the
optimality of the JL lemma. Furthermore, we do so for
almost the full range of €.
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Big Data

9 Jelani Nelson designs clever algorithms that only have to remember
slivers of massive data sets. He also teaches kids in Ethiopia how to code.
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EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnson1 and Joram L:lndenstrauss2

INTRODUCTION

In this note we consider the following extension problem for Lipschitz
functions: Given a metric space X and n =2, 3, 4, ... , estimate the
smallest constant L = L(X, n) so that every mapping f from every n-element

subset of X 1into 82 extends to a mapping E from X into ¢ with

2

(Here ”g”mp is the Lipschitz constant of the function g.) A classical re-

sult of Kirszbraun's [1l4, p. 48] states that L(Zz, n) =1 for all n, but

it is easy to see that L(X, n) » » as n -+ « for many metric spaces X.



We begin with the geometrical lemma mentioned in the introduction.

ILEMMA 1. For each 1 > T > 0 there is a constant K = K(t) > 0 so that if

A<:8g, A=n for some n = 2, 3, ... , then there is a mapping f from A

onto a subset of Bg (k = [K log n]) which satisfies
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Curse of Dimensionality
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Abstract

Given user data, one often wants to find ap-
proximate matches in a large database. A
good example of such a task is finding images
similar to a given image in a large collection
of images. We focus on the important and
technically difficult case where each data ele-
ment is high dimensional, or more generally, is
represented by a point in a large metric space-
and distance calculations are computationally
expensive. |

the triangle inequality (see Section 3). Hence metric
spaces are a very general concept and can be applied
to vectors (for example, under Euclidean distance) as
well as objects like strings and graphs which cannot
be easily represented as vectors (if at all). Finding
near neighbors in a metric space refers to selecting the
elements of a data set (a finite subset of the space)
which are within a certain distance of a given point.
The problem of finding the near neighbors in a large
data set has been studied well and has a number of
good solutions, if the data is in a simple (e.g. Eu-
clidean), low-dimensional vector space. However, if
the data lies 1n a large metric space the probilem be-
comes much more difficult. Bv a large metric space






Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
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Abstract

The nearest nesghbor problem is the following: Given a set
of n points P = {py,...,pn} in some metric space X, pre-
process P so as to efficiently answer queries which require
finding the point in P closest to a query point ¢ € X. We fo-
cus on the particularly interesting case of the d-dimensional
Euclidean space where X = R under some I, norm. De-
spite decades of effort, the current solutions are far from
satisfactory; in fact, for large d, in theory or in practice,
they provide little improvement over the brute-force algo-
rithm which compares the query point to each data point.
Of late, there has been some interest in the approrimate
nearest neighbors problem, which is: Find a point p € P
that is an e-approximate nearest neighbor of the query ¢ in
that for all p’ € P, d(p,q) < (1 +€)d(p’, q)-

1 iIntroduction

The nearest neighbor search (NNS) problem i3 Given
a set of n points P = {p1,...,pn} in a metric space .X with
distance function d, preprocess P so as to efficiently answer
queries for finding the point in P closest to a query point
q € X. We focus on the particularly interesting caze of the
d-dimensional Euclidean space where X = R under some
lp norm. The low-dimensional case is well-solved [26], so the
main issue is that of dealing with the “curse of dimensional-
ity” [16]. The problem was originally posed in the 1960s by
Minsky and Papert [53, pp. 222-225], and despite decades
of effort the current solutions are far from satisfactory. In
fact, for large d, in theory or in practice, they provide little
improvement over a brute-force algorithm which compares
a query g to each p € P. The known algorithms are of two



A The Dimension Reduction Technique

We first outline our proof for the random projections tech-
nique for dimension reduction., Combining this with Propo-
pition 2, we obtain the result given in Proposition 3.

Definition 8 Let M = (X,d) and M’ = (X', d') be two
melric spaces, The space M is said to have a c-isometric
embedding, or simply a c-embedding, in M’ if there ez-
fots a map f: M — M’ such that

(1~ €)d(p,q) < d'(f(p), £(g)) < (1 +€)d(p,q)

forallp,g € X. 17°¢ call ¢ the distortion of the embedding;

if ¢ = 1, we call the embedding isometric.

Frankl and Machara [32] gave the following improve-
ment to the Johnson-Lindenstrauss Lemma [41] on (1 + ¢)-

embedding of any S € 12 in 1908 15D,

Lemma 6 (Frankl-Maehara {32]) For any 0 < € < £,
any (sufficiently large) set S of points in R?, and k = [9(® -
2¢2/3)"! In ]S” +1, there exists a map f : S — R* such that
forallu,v e S

(1=¢)fju~ v||2 < |I1£(u) = FOIIF < (1 +€)llu - vif’.

The proof proceeds by showing that the square of the

IA“"““I Ar LN Mﬂt\inn" Fat o A‘. Masuesd Sadve ‘- wtnnd s 20 men --“Jn\“ ,‘

where Py is a random variable following the Poisson distri-
bution with parameter a. Bounding the latter quantity is
a matter of simple calculation. |

An interesting question is if the Johnson-Lindenstrauss
Lemma holds for other I, norms. A partial answer is pro-
vided by the following two results.

Theorem 5 For anyp €[1,2], any n-pomt set S C 13, and

any € > 0, there ezist a map f : S — 1§ with k = O(logn)
such that for allu,v € S.

(1~ &)llu—vllp < If(u) = FII* < (1 +€)llu = v]lp.

Theorem 6 The Johnson-Lindenstrauss Lemma does not
hold for leo. More specifically, there is a set S of n pomts
in R¢ for some d such that any embedding of S in R’/ has
distortion Q(182),

ke

Proof Sketch: We give a sketch of the proof of Theorem 6
based on the following two known facts.

Fact 3 (Linial, London, and Rabinovich [48]) Everyn-
point metric M can be isometrically embedded in 1%,

Fact 4 (Linial, London, and Rabinovich [48]) There are
graphs with n vertices which for any d cannot be embedded
in I3 with distortion o(log n).
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Lower bounds






Combinatorics, Probability and Computing (2009) 18, 3—-15. (© 2008 Cambridge University Press
doi:10.1017/S0963548307008917 Printed in the United Kingdom

Perturbed Identity Matrices Have
High Rank: Proof and Applications

NOGA ALONT

Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel
(e-mail: nogaa@tau.ac.il)

Received 15 November 2006, revised 17 November 2007, first published online 16 January 2008

We describe a lower bound for the rank of any real matrix in which all diagonal entries are
significantly larger in absolute value than all other entries, and discuss several applications of
this result to the study of problems in Geometry, Coding Theory, Extremal Finite Set Theory

and Probability. This is partly a survey, containing a unified approach for proving various known
results, but it contains several new results as well.



3. Distortion in low-dimension embeddings

A well-known lemma of Johnson and Lindenstrauss, proved in [11] (see also [15]), asserts that for
any € > 0, any set 4 of n points in an Euclidean space can be embedded in an Euclidean space of
dimension k = c(e) log n with distortion at most e. That is, there is a mapping f : A — R* such
that for any a, b € A, the distance between f(a) and f(b) is at least the distance between a and b,
and at most that distance multiplied by 1 + €. The proof gives that c(e) < O( 6% ). Theorem 2.1 can
be used to show that this is nearly tight: c(e) must be at least Q(m) , even for embedding
the set of points of a simplex. This is stated in the following proposition, proved in [1].

aded from https://www.cambridge.org/core. Stanford Libraries, on 30 Mar 2022 at 20:20:39, subject to the Cambridge Core terms of use, available at
~vww.cambridge.org/core/terms. https://doi.org/10.1017/S0963548307008917

6 N. Alon

Proposition 3.1. Let Py, Py,...,P, be a set of n+ 1 points in R* and suppose that the dis-

tance between any two of them is at least 1 and at most 1 + €, where ﬁ <e< %. Then k >

Tloo(1/e) 102,(1 7 log n, where ¢’ is an absolute positive constant. []



Many Applications



To appear as a part of an upcoming textbook on dimensionality reduction and manifold learning.
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