
1

Mesos Background

https://web.stanford.edu/class/cs114/

Philip Levis 
Stanford University 
pal@cs.stanford.edu

Background for Mesos

Computer Systems

Computer systems focus on abstraction
• Software (operating systems): I have some hardware

resources, what software API do I provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks

• Hardware (architecture): I have digital logic, what
mechanisms do I provide to software?
- An instruction set defines how arithmetic and memory work
- A bus defines how hardware devices can access each other 

A good abstraction is easy to use and efficient while
being simple to implement

2

Distributed Systems

Collections of computers connected over a network
• No computer has a perfect view of system state
• Different computers see things differently
• Networks fail: even if rarely, it'll happen, and your system

needs to be able to handle it

Three major considerations
• Performance
• Scalability
• Correctness

3

Parallel vs. Distributed

Parallel: multiple processors/cores 
execute equal, homogenous parts 
of a computation

Distributed: multiple cores on a  
network execute different parts 
of a computation

4

Value of Parallelism

More cores: if you can keep them busy with useful
work, it's faster

More network: if machines can load data in parallel,
it's faster

More memory: you have more space for data

A large number of smaller computers is less
expensive than a few huge computers

5

More is Better

A large number of smaller _______ is less expensive
than a few huge _______

• Computers
• Disks
• Servers
• Displays
• Network switches

Price performance tradeoff

6

Size Cost Cost/TB
500GB $87 $174

1TB $109 $109

2TB $209 $105

4TB $729 $183

Samsung 860 EVO SSDS

7

Rise of the Datacenter

Pictures stolen from Jeff Dean's 2010 talk at Stanford

8

9

10

11

2003

12

MapReduce (2004)

MapReduce Model

MapReduce is a programming model and associated
runtime to manage the program

• Programming model: the abstraction
• Associated runtime: the system 

Intended for processing very large (can't fit in
memory on lots of nodes) data sets

• E.g., computing an index of the web

Basic idea: take data and split it into pieces (e.g.,
16-64GB), process pieces in parallel

13

Programming Model

map(k1, v1) -> list(k2, v2)

reduce(k2, list(v2)) -> list(v2)

User writes these two functions (plus an optional
partitioner): MapReduce does the rest

Compose sequences of map and reduce into
complex pipelines

14

Example: Word Count

map(String key, String value):  
 // key: document name  
 // value: document contents  
 for each word w in value:  
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):  
 // key: a word  
 // values: a list of counts  
 int result = 0;

 for each v in values  
 result += ParseInt(v);
 Emit(AsString(result));

15

Example: Inverted Index

16

map(String doc, String value):  
 // doc: document ID  
 // value: document contents  
 for each word w in value:  
 EmitIntermediate(w, key);

reduce(String word, Iterator list):  
 // word: a word  
 // list: a list of document IDs  
 list.sort().unique()

 Emit(AsString(word, list));

MapReduce Runtime

17

Operations are Idempotent

If a worker fails, just send the work to another node
• E.g., if a map task on a key fails, rerun it on another node

Stragglers: what if some tasks just take much longer (slow
nodes)?

• If a task takes too long just spawn another copy
• Variance, fraction, lots of approaches

Early datacenters were unreliable
• "For example, during one MapReduce operation, network

maintenance on a running cluster was causing groups of 80
machines at a time to become unreachable for several minutes."

18

Datacenter Computing

MapReduce opened the door to easily computing on
huge volumes of data (can't even fit in the memory
of 1000s of machines)

Frameworks started to proliferate: want to run many
different kinds of jobs on a cluster

How do you schedule lots of heterogenous data-
parallel jobs on a cluster?

19

Different Kinds of Frameworks

20

Controller

Workers

Centralized 
MapReduce, Spark, Hadoop

Decentralized 
Dryad, MPI, Torque

Workers

Finer-grained Sharing

21

32GB RAM

Fault Tolerance

At scale, things fail (computers, programs, disks)

Early in datacenter computing (e.g., MapReduce),
failures were common

• Much less common today, driven by AWS reliability
• Tension with early Google Compute Platform offerings:

they designed all their systems to be robust to failures,
but consumer applications aren't (e.g., an Oracle license
server)

22

Soft State vs. Hard State

Hard state: information stored on a computer that's
required for forward progress and correctness

• Regenerating it might require a lot of recompilation
• Example: your user account on a website 

Soft state: information that improves performance,
but isn't required

• Losing it might prevent certain optimizations but doesn't
stop forward progress

• Example: cookies/passwords stored on your computer

23

Dataflow Systems

Systems like MapReduce (and Spark) use a
centralized controller: it sends commands to nodes,
telling them what operations to execute

Dataflow systems do not have this explicit control
channel

• Instead, computations run when they receive the data
they need

• Plasticine is a dataflow architecture

24

Different Kinds of Frameworks

25

Controller

Workers

Centralized 
MapReduce, Spark, Hadoop

Controller sends commands:

Node 15, execute task B on data π

Node 18, execute task S on data ∂ 

Centralization makes debugging, fault 
tolerance, and management much easier 
 
Easy to adapt to failures, stragglers, 
and dynamically schedule load

Sending commands is an overhead if tasks 
are short (not true in MapReduce)

Different Kinds of Frameworks

26

Decentralized 
Dryad, MPI, Torque

Workers

Program installed on each node

Tasks on each node execute when they 
receive the data they need

Execute task B on data of type π

Execute task S on data of type ∂+µ

Executing tasks produces new data items, 
sent to other nodes 
 
The job sets up these data flow edges 
between nodes

Low overhead, but rescheduling is expensive

Spark

Designed by our very own Matei Zaharia!
• With a lot of help from others

Observation: MapReduce has low CPU utilization
because it reads/writes all data to disk

Spark: cache data in memory when possible, track
how data is generated so it can be regenerated if lost

• Plus, add a simple shell-like interface to allow interactive
use and programming

• Key abstraction: partitioning data by keys for parallelism

27

Framework Performance

Spark can be an order of magnitude faster than
MapReduce

• Disk is very very slow compared to memory

Early versions were still 50x slower than C++
• Lots of unnecessary overheads: copies, Java, Scala

Modern versions are ~3x slower than C++
• Acceptable performance cost for the productivity

increase of writing Java/shell code

28

Performance Bottlenecks

As framework performance increases, the central
controller becomes a bottleneck: it can't dispatch
tasks fast enough: modern Spark jobs run on 10s of
cores, not 1,000

29

