Mesos Background

https://web.stanford.edu/class/cs | |4/

Philip Levis
Stanford University
pal@cs.stanford.edu

Background for Mesos

Computer Systems

Computer systems focus on abstraction

* Software (operating systems): | have some hardware
resources, what software AP| do | provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks
* Hardware (architecture): | have digital logic, what
mechanisms do | provide to software!
- An instruction set defines how arithmetic and memory work

- A bus defines how hardware devices can access each other

A good abstraction is easy to use and efficient while
being simple to implement

Distributed Systems

Collections of computers connected over a network
* No computer has a perfect view of system state
* Different computers see things differently

* Networks fail: even if rarely, it'll happen, and your system
needs to be able to handle it

Three major considerations

* Performance

* Scalability
* Correctness e A e e ()

Parallel vs. Distributed

Parallel: multiple processors/cores
& & K T
execute equal, homogenous parts

of a computation

Distributed: multiple cores on a
network execute different parts
of a computation NENENENEN

IIIIIII

Value of Parallelism

More cores: if you can keep them busy with useful
worlk, it's faster

More network: if machines can load data in parallel,
it's faster

More memory: you have more space for data

A large number of smaller computers is less
expensive than a few huge computers

More is Better

A large number of smaller
than a few huge

* Computers

e Disks

* Servers

* Displays

* Network switches

Price performance tradeoff

is less expensive

Size Cost Cost/TB
500GB $87 $174
I'TB $109 $109
2TB $209 $105
4TB $729 $183

Samsung 860 EVO SSDS

Rise of the Datacenter

Pictures stolen from Jeff Dean's 2010 talk at Stanford

“Google” Circa 1997 (google.stanford.edu)

Google

“Corkboards” (1999)

g xg\" ‘ \}/)’

. 'k

Google

Google Data Center (2000)

S

e

! }':v)

,"~.:’;'..4"‘ ".',":'Y-"”..".l_‘

/9

e Ye %
: ’,l‘

3 ’ ’ ‘A v"-’iv‘ :
FERERERE FEFLE P

HAARNRAR NI

Google

2003

Goxc)8[6

MapReduce (2004)

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-

1 ~ 1 1° . 1

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to

MapReduce Model

MapReduce is a programming model and associated
runtime to manage the program

* Programming model: the abstraction
* Associated runtime: the system

Intended for processing very large (can't fit in
memory on lots of nodes) data sets

* E.g., computing an index of the web

Basic idea: take data and split it into pieces (e.g.,
| 6-64GB), process pieces in parallel

Programming Model
map(kl, vl) -> list(k2, v2)
reduce(k2, list(v2)) -> list(v2)

User writes these two functions (plus an optional
partitioner): MapReduce does the rest

Compose sequences of map and reduce into
complex pipelines

Example:Word Count

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word
// values: a list of counts

int result = 0;

for each v in values
result += ParseInt(v);
Emit (AsString(result));

Example: Inverted Index

map(String doc, String value):
// doc: document ID
// value: document contents
for each word w in value:
EmitIntermediate(w, key);

reduce(String word, Iterator list):
// word: a word
// list: a list of document IDs
list.sort().unique()

Emit (AsString(word, list));

MapReduce Runtime

User
Program
1) fork " : -
(D or. () fork (1.). fork
.)
@) assign
A as'sign reduce . .

map

spl?t 0 (6) write output
split 1 (5) remote read file 0
split2 |—3)read (4) local write

: worker output
split 3 file 1
split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Operations are ldempotent

If a worker fails, just send the work to another node

* E.g., if a map task on a key fails, rerun it on another node

Stragglers: what if some tasks just take much longer (slow
nodes)?

* If a task takes too long just spawn another copy

* Variance, fraction, lots of approaches

Early datacenters were unreliable

* "For example, during one MapReduce operation, network
maintenance on a running cluster was causing groups of 80
machines at a time to become unreachable for several minutes."

Datacenter Computing

MapReduce opened the door to easily computing on
huge volumes of data (can't even fit in the memory

of 1000s of machines)

Frameworks started to proliferate: want to run many
different kinds of jobs on a cluster

How do you schedule lots of heterogenous data-
parallel jobs on a cluster?

Different Kinds of Frameworks

Centralized Decentralized
MapReduce, Spark, Hadoop Dryad, MPIl, Torque

T

Controller E@ﬂ

Workers Workers

20

32GB RAM

= = = =
o (a o o
)) O)
................................
................................
= -] -] =
o o o o
)) ())

................................
= = = =
(a1 o (a1 (a
)) (&))

................................
= = = =
o o o o
)) &))

< B

Finer-grained Sharing

21

Fault Tolerance

At scale, things fail (computers, programs, disks)

Early in datacenter computing (e.g., MapReduce),
failures were common
* Much less common today, driven by AWS reliability

* Tension with early Google Compute Platform offerings:
they designed all their systems to be robust to failures,
but consumer applications aren't (e.g.,an Oracle license
server)

22

Soft State vs. Hard State

Hard state: information stored on a computer that's
required for forward progress and correctness

* Regenerating it might require a lot of recompilation

* Example: your user account on a website

Soft state: information that improves performance,
but isn't required

* Losing it might prevent certain optimizations but doesn't
stop forward progress

* Example: cookies/passwords stored on your computer

23

Dataflow Systems

Systems like MapReduce (and Spark) use a
centralized controller: it sends commands to nodes,
telling them what operations to execute

Dataflow systems do not have this explicit control
channel

* Instead, computations run when they receive the data
they need

* Plasticine is a dataflow architecture

24

Different Kinds of Frameworks

Centralized
MapReduce, Spark, Hadoop

Controller sends commands:

l Node |5, execute task B on data 11
Controller / __ \ Node 18, execute task S on data d
l Centralization makes debugging, fault

tolerance, and management much easier

Easy to adapt to failures, stragglers,
and dynamically schedule load

Sending commands is an overhead if tasks
-------- — are short (not true in MapReduce)

!
!
[N DR N [}

Workers

25

Different Kinds of Frameworks

Program installed on each node

Tasks on each node execute when they
receive the data they need

Execute task B on data of type Tt
Execute task S on data of type d+u

Executing tasks produces new data items,

Decentralized
Dryad, MPI|, Torque

sent to other nodes

The job sets up these data flow edges
between nodes

Low overhead, but rescheduling is expensive

Workers

26

Spark

Designed by our very own Matei Zaharia!
* With a lot of help from others

Observation: MapReduce has low CPU utilization
because it reads/writes all data to disk

Spark: cache data in memory when possible, track
how data is generated so it can be regenerated if lost

* Plus,add a simple shell-like interface to allow interactive
use and programming

e Key abstraction: partitioning data by keys for parallelism

27

Framework Performance

Spark can be an order of magnitude faster than
MapReduce

* Disk is very very slow compared to memory

Early versions were still 50x slower than C++

* Lots of unnecessary overheads: copies, Java, Scala

Modern versions are ~3x slower than C++

* Acceptable performance cost for the productivity
increase of writing Java/shell code

28

Performance Bottlenecks

As framework performance increases, the central
controller becomes a bottleneck: it can't dispatch

tasks fast enough: modern Spark jobs run on |0s of
cores, not 1,000

Execution Templates: Caching Control Plane Decisions for
Strong Scaling of Data Analytics

Omid Mashayekhi Hang Qu Chinmayee Shah Philip Levis
Stanford University

Abstract 3

[Control Plane

Y W Computati
Control planes of cloud frameworks trade off between £ 2 ompd 31'072
N . . = 1.59 1.64
scheduling granularity and performance. Centralized s
systems schedule at task granularity, but only schedule 81
a few thousand tasks per second. Distributed systems 2
schedule hundreds of thousands of tasks per second but 730 40 50 60 70 80 90 100

changing the schedule is costly. Number of Workers

We present execution templates, a control plane ab-
straction that can schedule hundreds of thousands of Figure 1: The control plane is a bottleneck in modern
tasks per second while supporting fine-grained, per-task ~ analytics workloads. Increasingly parallelizing logistic
scheduling decisions. Execution templates leverage a regression on 100GB of data with Spark 2.0’s MLIib re-
program’s repetitive control flow to cache blocks of duces computation time (black bars) but control over-
frequently-executed tasks. Executing a task in a template ~ head outstrip these gains, increasing completion time.

29

