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Computer Systems

Computer systems focus on abstraction
• Software (operating systems): I have some hardware 

resources, what software API do I provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks

• Hardware (architecture): I have digital logic, what 
mechanisms do I provide to software?
- An instruction set defines how arithmetic and memory work
- A bus defines how hardware devices can access each other 

A good abstraction is easy to use and efficient while 
being simple to implement
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Distributed Systems

Collections of computers connected over a network
• No computer has a perfect view of system state
• Different computers see things differently
• Networks fail: even if rarely, it'll happen, and your system 

needs to be able to handle it

Three major considerations
• Performance
• Scalability
• Correctness
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Parallel vs. Distributed

Parallel: multiple processors/cores 
execute equal, homogenous parts 
of a computation

Distributed: multiple cores on a  
network execute different parts 
of a computation
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Value of Parallelism

More cores: if you can keep them busy with useful 
work, it's faster

More network: if machines can load data in parallel, 
it's faster

More memory: you have more space for data

A large number of smaller computers is less 
expensive than a few huge computers
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More is Better

A large number of smaller _______ is less expensive 
than a few huge _______

• Computers
• Disks
• Servers
• Displays
• Network switches

Price performance tradeoff
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Size Cost Cost/TB
500GB $87 $174

1TB $109 $109

2TB $209 $105

4TB $729 $183

Samsung  860 EVO SSDS
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Rise of the Datacenter

Pictures stolen from Jeff Dean's 2010 talk at Stanford
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2003
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MapReduce (2004)



MapReduce Model

MapReduce is a programming model and associated 
runtime to manage the program

• Programming model: the abstraction
• Associated runtime: the system 

Intended for processing very large (can't fit in 
memory on lots of nodes) data sets

• E.g., computing an index of the web

Basic idea: take data and split it into pieces (e.g., 
16-64GB), process pieces in parallel
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Programming Model

map(k1, v1) -> list(k2, v2)

reduce(k2, list(v2)) -> list(v2)

User writes these two functions (plus an optional 
partitioner): MapReduce does the rest

Compose sequences of map and reduce into 
complex pipelines
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Example: Word Count

map(String key, String value):  
  // key: document name  
  // value: document contents  
  for each word w in value:  
    EmitIntermediate(w, "1"); 

reduce(String key, Iterator values):  
  // key: a word  
  // values: a list of counts  
  int result = 0; 

  for each v in values  
    result += ParseInt(v);
  Emit(AsString(result));
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Example: Inverted Index
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map(String doc, String value):  
  // doc: document ID  
 // value: document contents  
  for each word w in value:  
    EmitIntermediate(w, key); 

reduce(String word, Iterator list):  
  // word: a word  
  // list: a list of document IDs    
  list.sort().unique()

  Emit(AsString(word, list));



MapReduce Runtime
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Operations are Idempotent

If a worker fails, just send the work to another node
• E.g., if a map task on a key fails, rerun it on another node

Stragglers: what if some tasks just take much longer (slow 
nodes)?

• If a task takes too long just spawn another copy
• Variance, fraction, lots of approaches

Early datacenters were unreliable
• "For example, during one MapReduce operation, network 

maintenance on a running cluster was causing groups of 80 
machines at a time to become unreachable for several minutes." 

18



Datacenter Computing

MapReduce opened the door to easily computing on 
huge volumes of data (can't even fit in the memory 
of 1000s of machines)

Frameworks started to proliferate: want to run many 
different kinds of jobs on a cluster

How do you schedule lots of heterogenous data-
parallel jobs on a cluster?
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Different Kinds of Frameworks
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Controller

Workers

Centralized 
MapReduce, Spark, Hadoop

Decentralized 
Dryad, MPI, Torque

Workers



Finer-grained Sharing
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32GB RAM



Fault Tolerance

At scale, things fail (computers, programs, disks)

Early in datacenter computing (e.g., MapReduce), 
failures were common

• Much less common today, driven by AWS reliability
• Tension with early Google Compute Platform offerings: 

they designed all their systems to be robust to failures, 
but consumer applications aren't (e.g., an Oracle license 
server)
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Soft State vs. Hard State

Hard state: information stored on a computer that's 
required for forward progress and correctness

• Regenerating it might require a lot of recompilation
• Example: your user account on a website 

Soft state: information that improves performance, 
but isn't required

• Losing it might prevent certain optimizations but doesn't 
stop forward progress

• Example: cookies/passwords stored on your computer
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Dataflow Systems

Systems like MapReduce (and Spark) use a 
centralized controller: it sends commands to nodes, 
telling them what operations to execute

Dataflow systems do not have this explicit control 
channel

• Instead, computations run when they receive the data 
they need

• Plasticine is a dataflow architecture
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Different Kinds of Frameworks
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Controller

Workers

Centralized 
MapReduce, Spark, Hadoop

Controller sends commands:

Node 15, execute task B on data π

Node 18, execute task S on data ∂ 

Centralization makes debugging, fault 
tolerance, and management much easier 
 
Easy to adapt to failures, stragglers, 
and dynamically schedule load

Sending commands is an overhead if tasks 
are short (not true in MapReduce)



Different Kinds of Frameworks
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Decentralized 
Dryad, MPI, Torque

Workers

Program installed on each node

Tasks on each node execute when they 
receive the data they need

Execute task B on data of type π

Execute task S on data of type ∂+µ

Executing tasks produces new data items, 
sent to other nodes 
 
The job sets up these data flow edges 
between nodes

Low overhead, but rescheduling is expensive



Spark

Designed by our very own Matei Zaharia!
• With a lot of help from others

Observation: MapReduce has low CPU utilization 
because it reads/writes all data to disk

Spark: cache data in memory when possible, track 
how data is generated so it can be regenerated if lost

• Plus, add a simple shell-like interface to allow interactive 
use and programming

• Key abstraction: partitioning data by keys for parallelism
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Framework Performance

Spark can be an order of magnitude faster than 
MapReduce

• Disk is very very slow compared to memory

Early versions were still 50x slower than C++
• Lots of unnecessary overheads: copies, Java, Scala

Modern versions are ~3x slower than C++
• Acceptable performance cost for the productivity 

increase of writing Java/shell code
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Performance Bottlenecks

As framework performance increases, the central 
controller becomes a bottleneck: it can't dispatch 
tasks fast enough: modern Spark jobs run on 10s of  
cores, not 1,000
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