Web Application Background

https://web.stanford.edu/class/cs | |4/

Philip Levis
Stanford University
pal@cs.stanford.edu

Background for Oblique

Lots of material in this lecture borrowed from CS144

Computer Systems

Computer systems focus on abstraction

* Software (operating systems): | have some hardware
resources, what software AP| do | provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks
* Hardware (architecture): | have digital logic, what
mechanisms do | provide to software!
- An instruction set defines how arithmetic and memory work

- A bus defines how hardware devices can access each other

A good abstraction is easy to use and efficient while
being simple to implement

Computer Systems

Computer systems focus on abstraction

* Software (operating systems): | have some hardware
resources, what software AP| do | provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks
* Hardware (architecture): | have digital logic, what
mechanisms do | provide to software!
- An instruction set defines how arithmetic and memory work

- A bus defines how hardware devices can access each other

A good abstraction is easy to use and efficient while
being simple to implement

Oblique
Oblique is about working within an abstraction

Particularly, how to make an abstraction (web page
loading) faster despite particular architectural and
security measures in place

Two key things to know:
* How the web works
* What symbolic execution is

HTTP and the Web

HyperText Transfer Protocol (HTTP)

Request-response protocol that underlies the web
* Used for a lot of other things too: Google RPC
* Designed to be easy to read/understand: text

HTTP and the Web

HyperText Transfer Protocol (HTTP)

Request-response protocol that underlies the web
* Used for a lot of other things too: Google RPC
* Designed to be easy to read/understand: text

GET /HTTP/I.1
—_— ﬂ
v NI

HTTP and the Web

HyperText Transfer Protocol (HTTP)

Request-response protocol that underlies the web
* Used for a lot of other things too: Google RPC
* Designed to be easy to read/understand: text

GET /HTTP/I.1
—_— ﬂ
-— v NI

HTTP/1.1 200 OK

Networking Stack

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

Networking Stack

Delivers data between computers connected across

Network Layer | IP multiple hops (the Internet).

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

Networking Stack

Delivers data between applications (multiple

Transport Layer | TCP .
applications on a computer).

Delivers data between computers connected across

Network Layer | IP multiple hops (the Internet).

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

Networking Stack

Application-level information and data transfer:
e.g., request and reply for document.

Application Layer| HTTP

Delivers data between applications (multiple

Transport Layer | TCP .
applications on a computer).

Delivers data between computers connected across

Network Layer | IP multiple hops (the Internet).

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

Wireshark Demo

Conceptual Model of HTTP

v FHTITITE

Conceptual Model of HTTP

» Request

Conceptual Model of HTTP

|[| - 3 |||u]lﬂ

» Request

Response

Conceptual Model of HTTP

VVYVYY

Request

Response

Requests

Conceptual Model of HTTP

VVYVYY

Request

Response

Requests

Responses

Web Developer Demo

Conceptual Model of HTTP

VVYVYY

Page loading times greatly affected by latency:
how long between a client sending a request
and receiving the response.

Request

Response

Requests

Responses

Making HT TP faster

Basic answer: caching
* Bring data closer to client

* Browser cache, proxy caches, content distribution
networks (CDNs)

CDN

Browser Proxy
Cache Cache ; <
Server
|[| - |||1[l|ﬂ

20

Caches vs. Accelerators

Caches store copies of previously accessed files

Accelerators take a more active role: prefetch files
before the client requests them

21

Under the Hood: Mobile Web Access

Client eNodeB Accelerator Web Server

GO
O uﬂl}ﬂ Internet { (”mj

Mobile Web Access

Client eNodeB Accelerator Web Server

GO
O uﬂ)ﬂ Internet { (”mj

What is the end-to-end latency of this communication path!?

How is that latency distributed?

Mobile Web Access

Client eNodeB Accelerator / \CDN Web Server
e PSITTTITH

GO
i [(”m} Internet { (”mj

What is the end-to-end latency of this communication path!?
How is that latency distributed?

CDN nodes may be co-located in mobile operator network: latency can shift
from being most Internet to being mostly wireless/last mile

Page Accelerators

Accelerators can observe your HT TP responses, see

what files you're going to need, and prefetch them
before you receive your response.

HTTP/2.0 allows server to PUSH data to a client
before it requests it.

25

Mobile Web Access

Client eNodeB Accelerator / \CDN Web Server
() e PSITTTITH
-é. / \ / Internet { j
5 |[|' cnu[!lﬂ e TSHTITIT
» GET
OK =
» GET
» GET
» GET
OK =
PUSH <«
PUSH <«
PUSH <«

HTTP is Cleartext

HTTP is a text-based protocol

 HTTP/2.0 introduces a bunch of forms of compression
for mobile links, but it's still basically text

If you access an HT TP site, anyone can see your
requests and the resulting data

* Can see what you request
* Can see the responses

HTTPS adds transport-layer security (TLS)

27

Networking Stack

Application-level information and data transfer:
e.g., request and reply for document.

Application Layer| HTTP

Delivers data between applications (multiple

Transport Layer | TCP .
applications on a computer).

Delivers data between computers connected across

Network Layer | IP multiple hops (the Internet).

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

28

Networking Stack

Application-level information and data transfer:

Application Layer| HTTPS e.g., request and reply for document.

Session Layer | TLS End-to-end confidentiality and integrity.

TCP Delivers data between applications (multiple

Transport Layer L
applications on a computer).

P Delivers data between computers connected across

Network Layer multiple hops (the Internet).

Delivers data between computers directly connected

Link Layer Ethernet through a medium (wire/wireless): single hop

29

Mobile Web Access

Client eNodeB Accelerator Web Server

GO
O uﬂ)ﬂ Internet { (”mj

What is the end-to-end latency of this communication path!?

How is that latency distributed?

Mobile Web Access with HT TPS

Client eNodeB Accelerator Web Server

_ ()

With TLS, the data stream between the client and web server has both
confidentiality and integrity

Accelerators can neither see nor change the data: they can't prefetch
because they can't see the pages loaded

Symbolic Execution

Symbolic execution is a way of executing a program to
see how inputs affect control flow and behavior

Variables are either symbolic (consider all possible
values) or concrete (has a particular value)

When you encounter an operation on a symbolic
value, consider what might happen

32

Symbolic execution example

int main(int argc, char** argv) {
if (argc > 5) {

}
if (argc == 4) {
char ch = *argv[argc];
} ...
}

Make argc and argv symbolic

A

A A

argc = *
argc > 5
argc = 4

possibly detect bug

* Consider what might happen for any possible input

* Can figure out two clauses are mutually exclusive

Constraints rapidly explode: need fast constraint
solvers to figure out what might execute

33

KLEE (OSDI 2008)

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

Abstract

We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We used KLEE to
thoroughly check all 89 stand-alone programs in the
GNU CoOREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems, and arguably are the single most heavily tested set
of open-source programs in existence. KLEE-generated
tests achieve high line coverage — on average over 90%
per tool (median: over 94%) — and significantly beat
the coverage of the developers’ own hand-written test
suite. When we did the same for 75 equivalent tools in
the BUSYBOX embedded system suite, results were even
better, including 100% coverage on 31 of them.

We also used KLEE as a bug finding tool, applying it to
452 applications (over 430K total lines of code), where
it found 56 serious bugs, including three in COREUTILS
that had been missed for over 15 years. Finally, we used

bolic values and replace corresponding concrete program
operations with ones that manipulate symbolic values.
When program execution branches based on a symbolic
value, the system (conceptually) follows both branches,
on each path maintaining a set of constraints called the
path condition which must hold on execution of that
path. When a path terminates or hits a bug, a test case
can be generated by solving the current path condition
for concrete values. Assuming deterministic code, feed-
ing this concrete input to a raw, unmodified version of
the checked code will make it follow the same path and
hit the same bug.

Results are promising. However, while researchers
have shown such tools can sometimes get good cover-
age and find bugs on a small number of programs, it
has been an open question whether the approach has any
hope of consistently achieving high coverage on real ap-
plications. Two common concerns are (1) the exponen-
tial number of paths through code and (2) the challenges

in handling code that interacts with its surrounding envi-
ronment anch ac the aneratino cvetem the network or

One of 2 papers | know
of that won both best
paper and test of time

34

1 : void expand(char *arg, unsigned char *buffer) { 8

2 . int i, ac; 9

3 : while (*arg) { 10*

4 : if (farg == "\\") { 11*
;5 arg++;

6 : i=ac = 0;

7 : if (farg >= 0’ && Marg <= '7") {

8 : do {

9: ac = (ac << 3) + *arg++ — '0’;

10: i++;

11: } while (i<4 && *arg>=’0’ && arg<='7");

12: *buffer++ = ac;

13: } else if (*farg != '\0’)

14: *buffer++ = *arg++;

15: else if (*farg == " [") { 12*

16: arg++; 13

17: i = *arg++; 14

18: if (farg++ 1= 7-7) { 15!

19: *buffer++ = ' [’;

20: arg —= 2;

21: continue;

22: }

23: ac = “arg++;

24: while (i <= ac) *buffer++ = i++;

25: arg++; /* Skip '] */

26: else

27: *buffer++ = *arg++;

28: }

29: }

30:

31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == " -") { 3*
34: 4
35 } 5
36: ... 6
37: expand(argv[index++], index); 7
38 ...

39: }

case (txr ["™ ™) that hits it. Assuming the options
of the previous subsection, KLEE runs tr as follows:

1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then calls main with
these initial path constraints.

When KLEE hits the branch argc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible; KLEE
forks execution and follows both paths, adding the
constraint argc > 1 onthe false path and argc < 1
on the true path.

Given more than one active path, KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so, KLEE adds further
constraints to the contents of arg, and forks for a
total of five times (lines denoted with a “x”): twice
on line 33, and then on lines 3, 4, and 15 in expand.
At each dangerous operation (e.g., pointer derefer-
ence), KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path, KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read of arg to go out of
bounds: after taking the true branch at line 15, the
code increments arg twice without checking if the
string has ended. If it has, this increment skips the
terminating ’ \ 0’ and points to invalid memory.
KLEE generates concrete values for argc and argv
(i.e., txr ["™ ") that when rerun on a raw ver-
sion of tr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

35

1 : void expand(char *arg, unsigned char *buffer) { 8

2 : int i, ac; 9

3 : while (*arg) { 10*

4 : if (farg == "\\") { 11*
;5 arg++;

6 : i=ac = 0;

7 : if (farg >= 0’ && Marg <= '7") {

8 : do {

9: ac = (ac << 3) + *arg++ — '0’;

10: i++;

11: } while (i<4 && *arg>='0' && *arg<='7");

12: *buffer++ = ac;

13: } else if (*farg != '\0’)

14: *buffer++ = *arg++;

15: else if (farg == " [) { 12*

16: arg++; 13

17: i = *arg++; 14

18: if (farg++ 1= 7-7) { 15!

19: *buffer++ = ' [’;

20: arg —= 2;

21: continue;

22: }

23: ac = “arg++;

24: while (i <= ac) *buffer++ = i++;

25: arg++; /* Skip '] */

26: else

27: *buffer++ = *arg++;

28: }

29: }

30:

31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == " -") { 3*
34: 4
35 } 5
36: ... 6
37: expand(argv[index++], index); 7
38 ...

39: }

case (txr ["™ ™) that hits it. Assuming the options
of the previous subsection, KLEE runs tr as follows:

1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then calls main with
these initial path constraints.

When KLEE hits the branch argc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible; KLEE
forks execution and follows both paths, adding the
constraint argc > 1 on the false path and argc <1
on the true path.

Given more than one active path, KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so, KLEE adds further
constraints to the contents of arg, and forks for a
total of five times (lines denoted with a “x”): twice
on line 33, and then on lines 3, 4, and 15 in expand.
At each dangerous operation (e.g., pointer derefer-
ence), KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path, KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read of arg to go out of
bounds: after taking the true branch at line 15, the
code increments arg twice without checking if the
string has ended. If it has, this increment skips the
terminating ’ \ 0’ and points to invalid memory.
KLEE generates concrete values for argc and argv
(i.e., txr ["™ ") that when rerun on a raw ver-
sion of tr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

36

1 : void expand(char *arg, unsigned char *buffer) { 8

2 : int i, ac; 9

3 : while (*arg) { 10*

4 : if (Yfarg == "\\’) { 11*
. 5 arg++;

6 : i=ac = 0;

7 : if (farg >= 0’ && Marg <= '7") {

8 : do {

9: ac = (ac << 3) + *arg++ — '0’;

10: i++;

11: } while (i<4 && *arg>='0' && *arg<='7");

12: *buffer++ = ac;

13: } else if (*farg != '\0’)

14: *buffer++ = *arg++;

53 else if (*farg == " [’) { 12*

16: arg++; 13

17: i = *arg++; 14

18: if (farg++ 1= 7-7) { 15!

19: *buffer++ = ' [’

20: arg —= 2;

21: continue;

22: }

23: ac = “arg++;

24: while (i <= ac) *buffer++ = i++;

25: arg++; /* Skip '] */

26: else

27: *buffer++ = *arg++;

28: }

29: }

30:

31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == " -") { 3*
34: 4
35 } 5
36: ... 6
37: expand(argv[index++], index); 7
38 ...

39: }

case (txr ["™ ™) that hits it. Assuming the options
of the previous subsection, KLEE runs tr as follows:

1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then calls main with
these initial path constraints.

When KLEE hits the branch argc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible; KLEE
forks execution and follows both paths, adding the
constraint argc > 1 onthe false path and argc < 1
on the true path.

Given more than one active path, KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so, KLEE adds further
constraints to the contents of arg, and forks for a
total of five times (lines denoted with a “x”): twice
on line 33, and then on lines 3, 4, and 15 in expand.
At each dangerous operation (e.g., pointer derefer-
ence), KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path, KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read of arg to go out of
bounds: after taking the true branch at line 15, the
code increments arg twice without checking if the
string has ended. If it has, this increment skips the
terminating ’ \ 0’ and points to invalid memory.
KLEE generates concrete values for argc and argv
(i.e., txr ["™ ") that when rerun on a raw ver-
sion of tr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

37

1 : void expand(char *arg, unsigned char *buffer) { 8

2 : int i, ac; 9

3 : while (*arg) { 10*

4 : if (farg == "\\") { 11*
;5 arg++;

6 : i=ac = 0;

7 : if (farg >= 0’ && Marg <= '7") {

8 : do {

9: ac = (ac << 3) + *arg++ — '0’;

10: i++;

11: } while (i<4 && *arg>='0' && *arg<='7");

12: *buffer++ = ac;

13: } else if (*farg != '\0’)

14: *buffer++ = *arg++;

15: else if (*farg == ' [’) { 12*

16: arg++; 13

17: i = *arg++; 14

18: if (farg++ = 7-7) { 15!

19: *buffer++ = ' [’

20: arg —= 2;

21: continue;

22: }

23: ac = “arg++;

24: while (i <= ac) *buffer++ = i++;

25: arg++; /* Skip '] */

26: else

27: *buffer++ = *arg++;

28: }

29: }

30:

31: int main(int argc, char* argv[]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == " -") { 3*
34: 4
35 } 5
36: ... 6
37: expand(argv[index++], index); 7
38: ...

39: }

case (txr ["™ ™) that hits it. Assuming the options
of the previous subsection, KLEE runs tr as follows:

1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then calls main with
these initial path constraints.

When KLEE hits the branch argc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible; KLEE
forks execution and follows both paths, adding the
constraint argc > 1 onthe false path and argc <1
on the true path.

Given more than one active path, KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so, KLEE adds further
constraints to the contents of arg, and forks for a
total of five times (lines denoted with a “x”): twice
on line 33, and then on lines 3, 4, and 15 in expand.
At each dangerous operation (e.g., pointer derefer-
ence), KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path, KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read of arg to go out of
bounds: after taking the true branch at line 15, the
code increments arg twice without checking if the
string has ended. If it has, this increment skips the
terminating ' \ 0’ and points to invalid memory.
KLEE generates concrete values for argc and argv
(i.e., txr ["™ ") that when rerun on a raw ver-
sion of tr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

38

