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Computer Systems

Computer systems focus on abstraction
• Software (operating systems): I have some hardware 

resources, what software API do I provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks

• Hardware (architecture): I have digital logic, what 
mechanisms do I provide to software?
- An instruction set defines how arithmetic and memory work
- A bus defines how hardware devices can access each other 

A good abstraction is easy to use and efficient while 
being simple to implement

2



Architecture

Architecture driven by Moore's Law
• "The complexity for minimum component 

costs has increased at a rate of roughly a  
factor of two per year"

As transistors shrink, many good things 
happen: Dennard scaling

• Voltage does down
• Delay goes down
• Clock speed goes up
• Power consumption goes down
• Started to break down around 2006
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Dennard Scaling
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Dennard Scaling

"Finally the sizable performance improvement expected from 
using very small MOSFETs in integrated circuits of comparably 

small dimensions was projected."



Historical Impact of Moore's Law

1960-1985:  Cheaper, smaller chips

1982-2006:  Very Large System Integration (VLSI) and 
EDA (electronic design automation) takes off; the 
"golden age" of computer architecture. Exponential 
growth in computing performance.

2006-Today: Performance mostly plateaus: move to 
multi-core, parallel architectures (GPUs, TPUs) and 
accelerators (e.g., AES instruction)
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Digital Signals



Effect of Noise on Analog & Digital Signals
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The Power of the Transfer Function

Each transistor restores the signal.

This allows us to build tremendously deep and 
complex digital circuits out of many transistors.

This is in contrast to analog circuits, which need to 
carefully manage how noise is introduced and 
propagated (the "black art" of analog design).
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Transistors Make Gates



Simplest Model for MOS transistors

Let value 1 be Vdd (e.g., 1.8V, 2.5V), value 0 be ground

NMOS devices are switches
• Gate is 1 -> the drain D and source S are connected
• Gate is 0 -> the drain D and source S are not connected

PMOS  devices are switches
• Gate is 0 -> the drain D and source S are connected
• Gate is 1 -> the drain D and source S are not connected
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Simple Case: Inverter

in out
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Simple Case: Inverter

in out
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If the input signal is 0, PMOS connects 
output to Vdd (1).

If the input signal is 1, NMOS connects 
output to ground (0).



Simple Case: Inverter

in out
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If the input signal is 1, NMOS connects 
output to ground (0).

If the input signal is 0, PMOS connects 
output to Vdd (1).



Simple Case: Inverter

Meets the rules
• Output is always driven (Either pMOS or nMOS is always active)
• Vdd and Gnd are never shorted (directly connected)

- At least with valid inputs

in out

15

If the input signal is 1, NMOS connects 
output to ground (0).

If the input signal is 0, PMOS connects 
output to Vdd (1).



NAND Gate (universal!)

nMOS in series pulling to Gnd
• If both A and B are 1, connect out to ground

pMOS in parallel pulling to Vdd
• If either A or B is 0, connect out to Vdd

Out always driven by pMOS’s or nMOS’s but never both
Number of inputs (“fan-in”) can be increased

B

A

out
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1 1 0



Gates
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Transistor Performance



Transistors are Physical Devices

Gates used to be polysilicon (high purity poly-crystalline Si), 
now metal gates with high-k dielectric (like HfO2)
Advanced transistors are 3D (e.g., FinFETs) we'll just talk 
about planar for simplicity.
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Transistor Geometry
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Example Layout of an Inverter
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Resistance of a Conductor

Resistance of a conductor
• Resistivity ρ * Length/Area

• Designer does not control ρ, t

• Generally deal with ρ /t
• Can control W, L

That’s why LONG, NARROW 
(and THIN) wires have higher 
resistances
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Resistance

For transistors
• Designer chooses

-  W and L

• Wider transistor
- Lower resistance
- More current
- Longer to switch

L

W

Source

Drain
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Circuit Timing



Delay and Rise/Fall Time

0.5

0.5
td

Delay, td, is measured from 50% 
point to 50% point. 

Curve depends on resistance 
of circuit to transistor gate and 
capacitance of transistor gate.

• Lower resistance lowers td

• Smaller capacitance lowers td

• Tradeoff: smaller capacitance 
has higher resistance for next 
stage
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Critical Paths

There are many signal paths through logic

Not all the paths have the same delay
• Path from input to latest output is called the critical path
• It is this path that specifies the maximum rate the circuit can generate 

results (inverse of path delay)

CL

inputs outputs

paths through logic

critical path
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Critical Path Example
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This circuit computes the function (¬(a ∧ b) ∨ c) ∧ (d ∨ e) ∧ f) ∨ g

The critical path traverses a 2-NAND, 2 2-NORs, a 3-NAND, 
and an inverter.  The delay of this path determines the maximum 
delay of a change in the inputs, e.g, abcdefg becomes abcdefg.

The length of wires also matters. Circuits in far away parts of
chips take longer to communicate.
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Clock Speed



Sequential Logic

So far, we have only looked at combinational circuits: 
input and outputs, no state

Digital circuits keep state
• Configuration
• Registers (data)

State is stored in flip-flops
• Keep a steady output until clock ticks
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Our friend the D flip-flop
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State is stored in flip-flops
• Keep a steady output until clock ticks
• Output changes to input on clock tick



Propagation Delay and Contamination Delay

Propagation Delay – Time from last input change until last 
output change.  (Input at steady state to output at steady state.)

Contamination Delay – Time from first input change until first 
output change.  (Input contaminated to output contaminated)
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Making Circuits Correct

Our clock speed can't be faster than the longest 
propagation delay of our system

• Otherwise, output might not be stable when we clock 
the flip-flop and store the results

• Faster transistors have higher clock speeds
• Shallower circuits have higher clock speeds

Contamination delay can't be faster than the time it 
takes for the flip-flop to store the state

• Otherwise, the state changes on the flip-flop before it's 
able to store it.
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The Essence of Hardware Performance

Software likes to think of hardware as just 1s and 0s

Hardware is built out of physical objects that rely on 
storing charge to build electrical fields to conduct.

Smaller transistors (narrower gates) are faster; 
shallower circuits are faster; speed is governed by 
slowest path.

These physical properties govern performance and so 
influence how you design a high-performance system.
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Architecture (ARMv6)
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Key Fact: Everything is organized into 32-bit words

Registers

ALU

DATA

ADDR

INST

+

Memory

r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

ADDR



Instructions (ARMv6)
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add r0, r0, r1 r0=r0+r1

ldr r0, [r1] r0=mem[r1]

add r0, r1, #1<<4 r0=r1+(1<<4)

add r0, r1, #1
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Pipelining:
Throughput and Latency



No pipelining
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1 2 3 4 5 6 7 8 9

1 Instruction 1 

2 Instruction 2

3

4

5

Clock cycle

Instruction



Instruction Pipelining
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1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2

3

4

5

Clock cycle

Instruction



Instruction Pipelining
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1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write
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Instruction Pipelining
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1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write

3 Fetch Decode Execute Memory Write

4 Fetch Decode Execute Memory Write

5 Fetch Decode Execute Memory Write

Clock cycle

Instruction



Instruction Pipelining
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1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write

3 Fetch Decode Execute Memory Write

4 Fetch Decode Execute Memory Write

5 Fetch Decode Execute Memory Write

Clock cycle

Instruction



Throughput vs. latency

Pipeline stages increase throughput: you can execute 
one instruction/cycle

Pipeline stages increase latency somewhat: each 
clock cycle is the maximum of all of the stages

You will see this tradeoff often in architecture. 
Memory access takes a long time, so you pipeline or 
buffer it to mask that latency: you execute on other 
data while waiting 
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Data Movement

Generally speaking, arithmetic is inexpensive: GPUs 
have thousands of tiny, lightweight cores to operate 
on pixels

The major performance bottleneck and energy cost 
is usually moving data

Bigger memories are slower and more expensive

Hierarchy of memories: keep used data close and fast
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Memory Hierarchy (Sky Lake 4GHz)
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Processor

Registers 
16 integer 

(180 physical) 
16 SSE

L1 
Instruction 

Cache

L1 
Data 

Cache

32kB/32kB 
8-way

L2 
Cache

L3 
Cache

Shared

Main 
Memory

Shared

1MB 
16-way

8MB 
fully associative

Off-chip 
DRAM

1 cycle 4 cycles 12 cycles 44 cycles 44 cycles + 
50ns



Memory Ports

There are wires to a memory that allow reads and 
writes (address lines and data lines), called a port

If one instruction is using the port, another 
instruction has to wait for the port to be available, 
even if it is accessing a different block of the memory

Multiport memories allow multiple concurrent 
accesses (at a cost of complexity)
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Parallelism

Hardware is inherently parallel: all circuits and gates 
can operate at once (with power limitations)
Many levels of parallelism possible

• Data-level: single instruction multiple data (SIMD)
• Instruction-level: run multiple instructions at once 

(multiple issue)
• Thread-level: multiple cores run separate streams of 

instructions in parallel
• Request level: multiple programs run on loosely coupled 

processors

46



SIMD

Example: Intel SSE cmpps instruction
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0x20111322 0x7faa1100 0x32000001 0x00000000

0x80000000 0x00000000 0x32000000 0x00000000

0x00000000 0xffffffff 0xffffffff 0x00000000

a

b

result



Skylake (retired 2019) pipeline
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Can execute up to 16 bytes 
of instructions/clock

Instructions decoded into 
simpler "micro-ops": can 
execute 5 µops/cycle

Instructions reordered to 
improve parallelism (mask 
delays)



Limits of Parallelism

add r2, r0, r1
mul r5, r2, #6
ldr r1, [r5]
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x = x + y;
x = x * 6;
y = *((int*)x);

Data dependencies
• Can't multiply until addition completes (r2 is input)
• Can't load until multiply completes (r5 is input)

Parallel programs minimize these dependencies, 
restructure programs for high parallelism



Sapphire Rapids (multicore)
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A15 (heterogenous cores)
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CPU 1: high performance core

CPU 2: efficiency core

NPU: Neural processing unit

GPU: graphics processing unit



CPU < GPU < FPGA < ASIC
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CPU < GPU < FPGA < ASIC
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Starting as early as 2006, we discussed deploying GPUs, FPGAs, or custom ASICs in 
our datacenters. We concluded that the few applications that could run on special 
hardware could be done virtually for free using the excess capacity of our large 
datacenters, and it’s hard to improve on free. That changed in 2013 when a 
projection showed people searching by voice for three minutes a day using speech 
recognition DNNs would double our datacenters’ computation demands, which 
would be very expensive using conventional CPUs. Thus, we started a high- priority 
project to produce a custom ASIC quickly for inference (and bought off-the-shelf 
GPUs for training). The goal was to improve cost-performance by 10X over GPUs. 
Given this mandate, in just 15 months the TPU was designed, verified [55], built, and 
deployed in datacenters. (Space limits the amount and the level of detail on the 
TPU in this paper; see [46], [47], [48], [49], [57], and [60] for more.) 



Historical Impact of Moore's Law

1960-1985:  Cheaper, smaller chips

1982-2006:  Very Large System Integration (VLSI) and 
EDA (electronic design automation) takes off; the 
"golden age" of computer architecture. Exponential 
growth in computing performance.

2006-Today: Performance mostly plateaus: move to 
multi-core, parallel architectures (GPUs, TPUs) and 
accelerators (e.g., AES instruction)

54


