
1

Computer Architecture Background

https://web.stanford.edu/class/cs114/

Philip Levis 
Stanford University 
pal@cs.stanford.edu

Background for Plasticine

Lots of material in this lecture borrowed from  
Subhasish Mitra, Bill Dally, and John Hennessy

Computer Systems

Computer systems focus on abstraction
• Software (operating systems): I have some hardware

resources, what software API do I provide?
- File systems: disk blocks become files
- Spark: network of computers runs thousands of small tasks

• Hardware (architecture): I have digital logic, what
mechanisms do I provide to software?
- An instruction set defines how arithmetic and memory work
- A bus defines how hardware devices can access each other 

A good abstraction is easy to use and efficient while
being simple to implement

2

Architecture

Architecture driven by Moore's Law
• "The complexity for minimum component 

costs has increased at a rate of roughly a  
factor of two per year"

As transistors shrink, many good things 
happen: Dennard scaling

• Voltage does down
• Delay goes down
• Clock speed goes up
• Power consumption goes down
• Started to break down around 2006

3

4

Dennard Scaling

5

Dennard Scaling

"Finally the sizable performance improvement expected from
using very small MOSFETs in integrated circuits of comparably

small dimensions was projected."

Historical Impact of Moore's Law

1960-1985: Cheaper, smaller chips

1982-2006: Very Large System Integration (VLSI) and
EDA (electronic design automation) takes off; the
"golden age" of computer architecture. Exponential
growth in computing performance.

2006-Today: Performance mostly plateaus: move to
multi-core, parallel architectures (GPUs, TPUs) and
accelerators (e.g., AES instruction)

6

7

Digital Signals

Effect of Noise on Analog & Digital Signals

8

V
Input +

ε
Noise

V+ε f f(V+ε)
Output

Noise added to Input Error at Output

Analog Signals

Digital Signals

V1Input +

ε
Noise

V1+ε f
f(V 1) Output

Noise added to Input < Noise Margin Correct Value at Output

The Power of the Transfer Function

Each transistor restores the signal.

This allows us to build tremendously deep and
complex digital circuits out of many transistors.

This is in contrast to analog circuits, which need to
carefully manage how noise is introduced and
propagated (the "black art" of analog design).

9

10

Transistors Make Gates

Simplest Model for MOS transistors

Let value 1 be Vdd (e.g., 1.8V, 2.5V), value 0 be ground

NMOS devices are switches
• Gate is 1 -> the drain D and source S are connected
• Gate is 0 -> the drain D and source S are not connected

PMOS devices are switches
• Gate is 0 -> the drain D and source S are connected
• Gate is 1 -> the drain D and source S are not connected

S

D
G G=1 

(Vdd)S

D
G=0  
(Ground)

S

D

NMOS transistors PMOS transistors

11

S

D

Gate

S

D

Gate

Simple Case: Inverter

in out

12

Simple Case: Inverter

in out

13

If the input signal is 0, PMOS connects
output to Vdd (1).

If the input signal is 1, NMOS connects
output to ground (0).

Simple Case: Inverter

in out

14

If the input signal is 1, NMOS connects
output to ground (0).

If the input signal is 0, PMOS connects
output to Vdd (1).

Simple Case: Inverter

Meets the rules
• Output is always driven (Either pMOS or nMOS is always active)
• Vdd and Gnd are never shorted (directly connected)

- At least with valid inputs

in out

15

If the input signal is 1, NMOS connects
output to ground (0).

If the input signal is 0, PMOS connects
output to Vdd (1).

NAND Gate (universal!)

nMOS in series pulling to Gnd
• If both A and B are 1, connect out to ground

pMOS in parallel pulling to Vdd
• If either A or B is 0, connect out to Vdd

Out always driven by pMOS’s or nMOS’s but never both
Number of inputs (“fan-in”) can be increased

B

A

out

16

A B Out
0 0 1

0 1 1

1 0 1

1 1 0

Gates

17

18

Transistor Performance

Transistors are Physical Devices

Gates used to be polysilicon (high purity poly-crystalline Si),
now metal gates with high-k dielectric (like HfO2)
Advanced transistors are 3D (e.g., FinFETs) we'll just talk
about planar for simplicity.

n+ n+

gate

p

dielectric

19

Transistor Geometry

20

S

S D

Gate

S D

Gate

PMOS

Example Layout of an Inverter

21

Resistance of a Conductor

Resistance of a conductor
• Resistivity ρ * Length/Area

• Designer does not control ρ, t

• Generally deal with ρ /t
• Can control W, L

That’s why LONG, NARROW
(and THIN) wires have higher
resistances

I L
W

t

W
L

ttW
LR ρρ ==

22

Resistance

For transistors
• Designer chooses

- W and L

• Wider transistor
- Lower resistance
- More current
- Longer to switch

L

W

Source

Drain

23

24

Circuit Timing

Delay and Rise/Fall Time

0.5

0.5
td

Delay, td, is measured from 50%
point to 50% point.

Curve depends on resistance
of circuit to transistor gate and
capacitance of transistor gate.

• Lower resistance lowers td

• Smaller capacitance lowers td

• Tradeoff: smaller capacitance
has higher resistance for next
stage

25

Critical Paths

There are many signal paths through logic

Not all the paths have the same delay
• Path from input to latest output is called the critical path
• It is this path that specifies the maximum rate the circuit can generate

results (inverse of path delay)

CL

inputs outputs

paths through logic

critical path

26

Critical Path Example

27

This circuit computes the function (¬(a ∧ b) ∨ c) ∧ (d ∨ e) ∧ f) ∨ g

The critical path traverses a 2-NAND, 2 2-NORs, a 3-NAND,
and an inverter. The delay of this path determines the maximum 
delay of a change in the inputs, e.g, abcdefg becomes abcdefg.

The length of wires also matters. Circuits in far away parts of
chips take longer to communicate.

28

Clock Speed

Sequential Logic

So far, we have only looked at combinational circuits:
input and outputs, no state

Digital circuits keep state
• Configuration
• Registers (data)

State is stored in flip-flops
• Keep a steady output until clock ticks

29

30

Our friend the D flip-flop

D Q
d q

clk

d

clk

q

ts th

tdCQ

x

x

tcCQ

State is stored in flip-flops
• Keep a steady output until clock ticks
• Output changes to input on clock tick

Propagation Delay and Contamination Delay

Propagation Delay – Time from last input change until last
output change. (Input at steady state to output at steady state.)

Contamination Delay – Time from first input change until first
output change. (Input contaminated to output contaminated)

31

a

b
tcab tdab

t1 t2 t3 t4

CLa b

Making Circuits Correct

Our clock speed can't be faster than the longest
propagation delay of our system

• Otherwise, output might not be stable when we clock
the flip-flop and store the results

• Faster transistors have higher clock speeds
• Shallower circuits have higher clock speeds

Contamination delay can't be faster than the time it
takes for the flip-flop to store the state

• Otherwise, the state changes on the flip-flop before it's
able to store it.

32

The Essence of Hardware Performance

Software likes to think of hardware as just 1s and 0s

Hardware is built out of physical objects that rely on
storing charge to build electrical fields to conduct.

Smaller transistors (narrower gates) are faster;
shallower circuits are faster; speed is governed by
slowest path.

These physical properties govern performance and so
influence how you design a high-performance system.

33

Architecture (ARMv6)

34

Key Fact: Everything is organized into 32-bit words

Registers

ALU

DATA

ADDR

INST

+

Memory

r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

ADDR

Instructions (ARMv6)

35

add r0, r0, r1 r0=r0+r1

ldr r0, [r1] r0=mem[r1]

add r0, r1, #1<<4 r0=r1+(1<<4)

add r0, r1, #1

36

Pipelining:
Throughput and Latency

No pipelining

37

1 2 3 4 5 6 7 8 9

1 Instruction 1

2 Instruction 2

3

4

5

Clock cycle

Instruction

Instruction Pipelining

38

1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2

3

4

5

Clock cycle

Instruction

Instruction Pipelining

39

1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write

3

4

5

Clock cycle

Instruction

Instruction Pipelining

40

1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write

3 Fetch Decode Execute Memory Write

4 Fetch Decode Execute Memory Write

5 Fetch Decode Execute Memory Write

Clock cycle

Instruction

Instruction Pipelining

41

1 2 3 4 5 6 7 8 9

1 Fetch Decode Execute Memory Write

2 Fetch Decode Execute Memory Write

3 Fetch Decode Execute Memory Write

4 Fetch Decode Execute Memory Write

5 Fetch Decode Execute Memory Write

Clock cycle

Instruction

Throughput vs. latency

Pipeline stages increase throughput: you can execute
one instruction/cycle

Pipeline stages increase latency somewhat: each
clock cycle is the maximum of all of the stages

You will see this tradeoff often in architecture.
Memory access takes a long time, so you pipeline or
buffer it to mask that latency: you execute on other
data while waiting

42

Data Movement

Generally speaking, arithmetic is inexpensive: GPUs
have thousands of tiny, lightweight cores to operate
on pixels

The major performance bottleneck and energy cost
is usually moving data

Bigger memories are slower and more expensive

Hierarchy of memories: keep used data close and fast

43

Memory Hierarchy (Sky Lake 4GHz)

44

Processor

Registers 
16 integer 

(180 physical) 
16 SSE

L1 
Instruction

Cache

L1 
Data

Cache

32kB/32kB 
8-way

L2
Cache

L3
Cache

Shared

Main
Memory

Shared

1MB 
16-way

8MB 
fully associative

Off-chip 
DRAM

1 cycle 4 cycles 12 cycles 44 cycles 44 cycles + 
50ns

Memory Ports

There are wires to a memory that allow reads and
writes (address lines and data lines), called a port

If one instruction is using the port, another
instruction has to wait for the port to be available,
even if it is accessing a different block of the memory

Multiport memories allow multiple concurrent
accesses (at a cost of complexity)

45

Parallelism

Hardware is inherently parallel: all circuits and gates
can operate at once (with power limitations)
Many levels of parallelism possible

• Data-level: single instruction multiple data (SIMD)
• Instruction-level: run multiple instructions at once

(multiple issue)
• Thread-level: multiple cores run separate streams of

instructions in parallel
• Request level: multiple programs run on loosely coupled

processors

46

SIMD

Example: Intel SSE cmpps instruction

47

0x20111322 0x7faa1100 0x32000001 0x00000000

0x80000000 0x00000000 0x32000000 0x00000000

0x00000000 0xffffffff 0xffffffff 0x00000000

a

b

result

Skylake (retired 2019) pipeline

48

Can execute up to 16 bytes
of instructions/clock

Instructions decoded into
simpler "micro-ops": can
execute 5 µops/cycle

Instructions reordered to
improve parallelism (mask
delays)

Limits of Parallelism

add r2, r0, r1
mul r5, r2, #6
ldr r1, [r5]

49

x = x + y;
x = x * 6;
y = *((int*)x);

Data dependencies
• Can't multiply until addition completes (r2 is input)
• Can't load until multiply completes (r5 is input)

Parallel programs minimize these dependencies,
restructure programs for high parallelism

Sapphire Rapids (multicore)

50

A15 (heterogenous cores)

51

CPU 1: high performance core

CPU 2: efficiency core

NPU: Neural processing unit

GPU: graphics processing unit

CPU < GPU < FPGA < ASIC

52

CPU < GPU < FPGA < ASIC

53

Starting as early as 2006, we discussed deploying GPUs, FPGAs, or custom ASICs in
our datacenters. We concluded that the few applications that could run on special
hardware could be done virtually for free using the excess capacity of our large
datacenters, and it’s hard to improve on free. That changed in 2013 when a
projection showed people searching by voice for three minutes a day using speech
recognition DNNs would double our datacenters’ computation demands, which
would be very expensive using conventional CPUs. Thus, we started a high- priority
project to produce a custom ASIC quickly for inference (and bought off-the-shelf
GPUs for training). The goal was to improve cost-performance by 10X over GPUs.
Given this mandate, in just 15 months the TPU was designed, verified [55], built, and
deployed in datacenters. (Space limits the amount and the level of detail on the
TPU in this paper; see [46], [47], [48], [49], [57], and [60] for more.)

Historical Impact of Moore's Law

1960-1985: Cheaper, smaller chips

1982-2006: Very Large System Integration (VLSI) and
EDA (electronic design automation) takes off; the
"golden age" of computer architecture. Exponential
growth in computing performance.

2006-Today: Performance mostly plateaus: move to
multi-core, parallel architectures (GPUs, TPUs) and
accelerators (e.g., AES instruction)

54

