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We describe a lower bound for the rank of any real matrix in which all diagonal entries are
significantly larger in absolute value than all other entries, and discuss several applications of
this result to the study of problems in Geometry, Coding Theory, Extremal Finite Set Theory
and Probability. This is partly a survey, containing a unified approach for proving various known
results, but it contains several new results as well.

1. Introduction

Let B = (bi,j) be an n by n real matrix. It is easy and well known that if, for every i, |bi,i| >∑
j �=i |bi,j |, then B is of full rank. Indeed, assuming this is false, let c = (cj) be a non-zero column

vector such that Bc = 0. Let |cr| = maxi |ci| (> 0) and consider the component number r of Bc.
The absolute value of this component is∣∣∣∣∑

j

br,jcj

∣∣∣∣ � |br,rcr| −
∑
j �=r

|br,jcj | � |cr|
(

|br,r| −
∑
j �=r

|br,j |
)

> 0,

contradicting the assumption Bc = 0 and proving that B indeed has full rank. In particular, this
implies that if bi,i = 1 for all i and |bi,j | � 1

n
for all distinct indices i, j, then the rank of B is n.

Suppose we relax the conditions above, and only assume that each diagonal entry is, in abso-
lute value, at least 1/2 and the absolute value of each other entry is at most ε. In this case one
can also establish a lower bound for the rank of B, as stated in the following theorem.

Theorem 1.1. There exists an absolute positive constant c such that the following holds. Let B
be an n by n real matrix with |bi,i| � 1/2 for all i and |bi,j | � ε for all i �= j, where 1

2
√
n

� ε <
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4 N. Alon

1/4. Then the rank of B satisfies

rank(B) � c

ε2 log(1/ε)
log n.

This theorem is a slight variation of a result proved in [1]. In this short paper we present
the proof of the theorem, and describe several applications in various areas. Some of these
applications are known, and some, including a solution of one of the open problems raised in
[16], are new.

The rest of the paper is organized as follows. In Section 2 we present the proof of the theorem,
in Sections 3, 4, 5, 6 and 7 we describe its applications in Geometry, Coding Theory, Extremal
Finite Set Theory, the investigation of pseudo-random sequences, and the study of small sample
spaces supporting nearly independent random variables. The final section, Section 8, contains
some concluding remarks and open problems.

2. Perturbed identity matrices

It is convenient to first prove the following variant of Theorem 1.1.

Theorem 2.1. There exists an absolute positive constant c such that the following holds. Let B
be an n by n real matrix with bi,i = 1 for all i and |bi,j | � ε for all i �= j. If the rank of B is d, and
1√
n

� ε < 1/2, then

d � c

ε2 log(1/ε)
log n.

This result is proved in [1]. For completeness, we reproduce the proof (omitting the final
detailed computation). We need the following well-known lemma proved, among other places,
in [8, 1].

Lemma 2.2. Let A = (ai,j) be an n by n real, symmetric matrix with ai,i = 1 for all i and |ai,j | �
ε for all i �= j. If the rank of A is d, then

d � n

1 + (n − 1)ε2
.

In particular, if ε � 1√
n

then d > n/2.

Proof. Let λ1, . . . , λn denote the eigenvalues of A; then their sum is the trace of A, which is n,
and at most d of them are non-zero. Thus, by Cauchy–Schwarz,

∑n
i=1 λ

2
i � d(n/d)2 = n2/d. On

the other hand, this sum is the trace of AtA, which is precisely
∑

i,j a
2
i,j � n + n(n − 1)ε2. Hence

n + n(n − 1)ε2 � n2/d, implying the desired result.

Lemma 2.3. Let B = (bi,j) be an n by n matrix of rank d, and let P (x) be an arbitrary poly-
nomial of degree k. Then the rank of the n by n matrix (P (bi,j)) is at most

(
k+d
k

)
. Moreover, if

P (x) = xk then the rank of (P (bi,j)) is at most
(
k+d−1

k

)
.
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Perturbed Identity Matrices Have High Rank: Proof and Applications 5

Proof. Let v1 = (v1,j)
n
j=1, v2 = (v2,j)

n
j=1, . . . , vd = (vd,j)

n
j=1 be a basis of the row-space of B.

Then the vectors (vk1

1,j · vk2

2,j · · · vkdd,j)nj=1, where k1, k2, . . . , kd range over all non-negative integers
whose sum is at most k, span the rows of the matrix (P (bi,j)). For P (x) = xk it suffices to take
all these vectors corresponding to k1, k2, . . . , kd whose sum is precisely k.

Remark. It is worth noting that there is no analogue to the last lemma if the entries of the
matrix are raised to a fractional power. In fact, for every n > 1 there is an n by n real matrix
B = (bi,j) of rank 2, such that the matrix (b

1/2
i,j ) has full rank. Indeed, let 3 = p1 < p2 < · · · < pn

be the first n odd primes, and consider the matrix B = (bi,j) given by bi,j = i + pj − j. Clearly

B has rank 2. We prove, by induction on n, that the matrix (b
1/2
i,j ) has rank n. This is trivially true

for n = 1. Assuming it holds for n − 1, suppose that the n by n matrix (b
1/2
i,j ) does not have full

rank. Expanding its determinant according to the last row, we get that
√
pn times the determinant

of the (n − 1) by (n − 1) matrix (b
1/2
i,j ), 1 � i, j � n − 1, which is non-zero by the induction

hypothesis, lies in the field Q[
√

3,
√

5, . . . ,
√
pn−1]. This implies that

√
pn lies in that field, and it

is well known that this is false, supplying the desired result.

Proof of Theorem 2.1. We may and will assume that B is symmetric, since otherwise we
simply apply the result to (B + Bt)/2 whose rank is at most twice the rank of B. If ε � 1/nδ for
some fixed δ > 0, the result follows by applying Lemma 2.2 to a � 1

ε2 � by � 1
ε2 � submatrix of B.

Thus we may assume that ε � 1/nδ for some fixed, small δ > 0. Put k = � log n
2 log(1/ε)

�, n′ = � 1
ε2k �

and note that n′ � n and that εk � 1√
n′ . By Lemma 2.3 the rank of the n′ by n′ matrix (bki,j)i,j�n′

is at most
(
d+k
k

)
� ( e(k+d)

k
)k. On the other hand, by Lemma 2.2, the rank of this matrix is at least

n′/2. Therefore (
e(k + d)

k

)k

� n′

2
=

1

2

⌊
1

ε2k

⌋
,

and the desired result follows by some simple manipulation, that can be found, for example,
in [4]. �

Proof of Theorem 1.1. Let C = (ci,j) be the n by n diagonal matrix defined by ci,i = 1/bi,i for
all i. Then every diagonal entry of CB is 1 and every off-diagonal entry is of absolute value at
most 2ε. The result thus follows from Theorem 2.1. �

3. Distortion in low-dimension embeddings

A well-known lemma of Johnson and Lindenstrauss, proved in [11] (see also [15]), asserts that for
any ε > 0, any set A of n points in an Euclidean space can be embedded in an Euclidean space of
dimension k = c(ε) log n with distortion at most ε. That is, there is a mapping f : A �→ Rk such
that for any a, b ∈ A, the distance between f(a) and f(b) is at least the distance between a and b,
and at most that distance multiplied by 1 + ε. The proof gives that c(ε) � O( 1

ε2 ). Theorem 2.1 can
be used to show that this is nearly tight: c(ε) must be at least Ω

(
1

ε2 log(1/ε)

)
, even for embedding

the set of points of a simplex. This is stated in the following proposition, proved in [1].
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6 N. Alon

Proposition 3.1. Let P0, P1, . . . , Pn be a set of n + 1 points in Rk, and suppose that the dis-
tance between any two of them is at least 1 and at most 1 + ε, where 1√

n
� ε � 1

10
. Then k �

c′

ε2 log(1/ε)
log n, where c′ is an absolute positive constant.

Proof. Put one of the points, say P0, at the origin, and shift all other points by at most ε,
making sure that their distance from P0 is exactly 1. By the triangle inequality, the distance
between any pair of the shifted points is still 1 + O(ε). Therefore, if vi is the k-dimensional
vector representing the ith point, then the gram matrix C = (vti · vj) is an n by n matrix in which
all diagonal entries are 1, and all other entries are 1/2 + O(ε). Moreover, the rank of this matrix
is at most k. Therefore, the rank of B = 2C − J, where J is the all-1 n by n matrix, is at most
k + 1. By Theorem 2.1 this rank is at least Ω

(
1

ε2 log(1/ε)
log n

)
, supplying the required lower bound

for the dimension k.

4. Coding theory

A binary code of length k is a set C ⊂ {0, 1}k of binary vectors with k coordinates. The code is
called ε-balanced if the Hamming distance between any two code-words is at least 1−ε

2
k and at

most 1+ε
2
k. For each vector v = (v1, v2, . . . , vk) ∈ C, let x(v) denote the vector

x(v) =
(
(−1)v1 , (−1)v2 , . . . , (−1)vk

)
∈ {−1, 1}k.

Note that for any two u, v ∈ C, the inner product between x(u) and x(v) is precisely k − 2h(u, v),
where h(u, v) is the Hamming distance between u and v.

It follows that for ε = 0, every two vectors x(u), x(v) corresponding to distinct code-words
of an ε-balanced code are orthogonal, and hence the number of code-words is at most k. Any
Hadamard matrix of order k (if one exists) shows that this is tight, hence this is tight for all powers
of 2 as well as for many other values of k divisible by 4 (see, e.g., [9] for more information about
the existence of Hadamard matrices.)

For positive values of ε, the problem of determining or estimating the largest possible car-
dinality of an ε-balanced code of length k is more complicated. Note, first, that ε should be
at least 1/k, since otherwise any ε-balanced code of length k is, in fact, 0-balanced. A simple
probabilistic argument (or an obvious variant of the Gilbert Varshamov bound) shows that there
are ε-balanced codes of length k with at least 2Ω(ε2k) code-words. Theorem 2.1 provides a quick
upper bound, as follows.

Proposition 4.1. There exists an absolute positive constant a such that, for all 1√
k

� ε < 1/2,

the cardinality of any ε-balanced code of length k is at most 2aε
2 log(1/ε)k.

Proof. Let C ⊂ {0, 1}k be an ε-balanced code of length k and maximum cardinality. Put n =

|C| and note that we may assume that n � k. Let X be the n by k matrix whose rows are the
|C| vectors x(v)√

k
, v ∈ C. Let B be the n by n matrix defined by B = (bu,v) = XXt. Then each

diagonal entry bu,u of B is 1, where every other entry bu,v for u �= v, u, v ∈ C, satisfies |bu,v| =

| 1
k
(k − 2h(u, v))| � ε. Therefore, by Theorem 2.1,

k � rank(X) � rank(B) � c

ε2 log(1/ε)
log n,

supplying the desired result.
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Perturbed Identity Matrices Have High Rank: Proof and Applications 7

Note that the assertion of the last proposition, at least for fixed ε and large n, can be also
deduced, in a completely different manner, from the Linear Programming technique of Delsarte
and the McEliece–Rodemich–Rumsey–Welch bound (see, e.g., [13, p. 559]). It is also worth
noting that, as is well known, the Plotkin bound (see, e.g., [13, pp. 41–43]) implies that any ε-
balanced code of length k has at most O(2εk/2k) code-words, and this bound holds even if we
do not assume any upper bound on the Hamming weights of the code-words, only a 1−ε

2
k lower

bound. The interesting part in the last proposition is, however, the quadratic dependence on ε in
the exponent.

When ε is smaller than 1√
k

we can repeat the above proof, but apply Lemma 2.2 instead of
Theorem 2.1, as stated in the next proposition.

Proposition 4.2. Suppose ε = 1

w
√
k
, where w > 1. Then the cardinality of any ε-balanced code

C of length k is smaller than k w2

w2−1
.

Proof. Put n = |C|. Applying Lemma 2.2 to the matrix B defined from the code C as in the
previous proof, we conclude that

k � rank(B) � n

1 + (n − 1)/(w2k)
,

implying the desired bound.

Thus, in particular, if w �
√

2 then n < 2k, and if w tends to infinity with k, then n � (1 +

o(1))k.

5. Cross-intersecting pairs

Extremal Finite Set Theory deals with various instances of the problem of determining or estim-
ating the maximum or minimum possible cardinality of a collection of subsets of a k-element
set that satisfies some given conditions. Rank arguments are often useful in obtaining results in
this area: see, e.g., [12] for several examples. It is therefore not surprising that one can apply
Theorems 1.1 and 2.1 (or Lemma 2.2) in the investigation of problems of this type. Here we only
describe one representative example.

Proposition 5.1. Let c, α be positive constants satisfying cα > 1. Let (Xi, Yi)1�i�n be a col-
lection of n pairs of subsets of a k-element set. Suppose that Xi ∩ Yi = ∅ for all i ∈ [n] =

{1, 2, . . . , n}, and that for all distinct i, j ∈ [n],

||Xi ∩ Yj | − c(k + 1)| <
√
k + 1

α
.

Then the number of pairs, n, satisfies n < c2α2

c2α2−1
(k + 1).

Proof. Let X be the n by k matrix whose rows are the incidence vectors of the sets Xi, and let
Y be the k by n matrix whose columns are the incidence vectors of the sets Yj . Then the product
Z = XY is an n by n matrix in which each diagonal entry is zero, and each other entry deviates
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8 N. Alon

from c(k + 1) by at most
√
k+1
α

. Let J be the n by n matrix in which all entries are 1, and define
B = 1

c(k+1)
(c(k + 1)J − Z). Then, each diagonal entry of B is 1, and the absolute value of each

other entry is at most
√
k + 1

α

1

c(k + 1)
=

1

cα
√
k + 1

.

Note that the rank of B is at most k + 1, as the rank of Z does not exceed k. On the other hand,
by Lemma 2.2, the rank of B is larger than

n

1 + n/(c2α2(k + 1))
.

It follows that

k + 1 >
n

1 + n/(c2α2(k + 1))
,

implying that n < c2α2

c2α2−1
(k + 1), as needed.

By the above proposition, whenever cα is bounded away from 1, the maximum possible num-
ber of pairs is linear in k. The existence of Hadamard matrices shows that, for an appropriate c,
this number is at least (1 − o(1))k even if α is arbitrarily large, implying that the above estimate
is nearly tight.

6. Pseudo-randomness

In a series of papers, Mauduit and Sárközy studied finite pseudo-random binary sequences EN =

(e1, . . . , eN) ∈ {−1, 1}N . In particular, they investigated in [14] a certain measure of pseudo-
randomness, defined as follows.

Given k,M � N and D = {d1, . . . , dk}, where the di are integers with 1 � d1 < · · · < dk �
N − M + 1, define

V (EN,M,D) =
∑

0�n<M

∏
1�i�k

en+di =
∑

0�n<M

∏
d∈D

en+d.

The correlation measure of order k of EN is defined as

Ck(EN) = max{|V (EN,M,D)| M and D such that M − 1 + dk � N}.

Improving an estimate of [7], the following is proved in [4] (among other related results).

Theorem 6.1 ([4], Theorem 1.2). There is an absolute constant c > 0 for which the following
holds. For any positive integers � and N with � � N/3, we have

max{C2(EN), C4(EN), . . . , C2�(EN)} � c
√
�N,

for all EN ∈ {−1, 1}N .

The proof is a simple consequence of Theorem 2.1. Here is a sketch. Fix a sequence EN =

(e1, e2, . . . , eN) for which the above maximum is as small as possible, and denote it by T . For
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Perturbed Identity Matrices Have High Rank: Proof and Applications 9

every subset A of at most � distinct members of {1, 2, . . . , 2N/3}, consider the {−1, 1}-vector
x(A) of length N/3 whose ith coordinate, for 1 � i � N/3, is the product

∏
a∈A ei+a. The set of

all vectors x(A) is a set of
∑�

j=0

(
2N/3
j

)
vectors. The inner product of any two distinct vectors in

this set is, in absolute value, at most T . Therefore, the gram matrix of the vectors, divided by
N/3, has 1 in each diagonal entry, and an element of absolute value at most 3T/N in each other
entry. It follows, by Theorem 2.1, that its rank is at least

Ω

(
N2

T 2 log(N/T )
log

[ �∑
j=0

(
2N/3

j

)])
.

However, this rank is at most 2N/3, implying that 2N/3 is at least as large as the last expression.
This implies the assertion of the theorem by some simple calculation, which is omitted. For more
details see [4], where it is also shown that this estimate is sharp up to a logarithmic factor.

7. Derandomization

7.1. Nearly independent random variables

Let X = {X1, X2, . . . , Xn} be a set of random variables over a sample space S of size m, and
suppose each variable takes values in {−1, 1}. For every subset Y ⊂ [n], let XY denote the
random variable XY = Πi∈Y Xi. The family X is called ε-biased if, for every non-empty Y ,

|Prob[XY = 1] − Prob[XY = −1]| � ε.

Note that it is more common to consider random variables attaining values in {0, 1}, and look at
their linear combinations over Z2, but the above definition is equivalent.

It is known (see [3]) that if S is a uniform sample space of size m supporting an ε-biased set
X as above, where ε � 2−n/2, then m � Ω

(
n

ε2 log(1/ε)

)
. Here we show that the same lower bound

applies even without the assumption that S is uniform.

Theorem 7.1. Let X = {X1, X2, . . . , Xn} be an ε-biased set of n random variables over a
sample space S = {s1, s2, . . . , sm} of size m. If ε � 2−n/2 then m � Ω

(
n

ε2 log(1/ε)

)
. If ε < 2−n/2

then m � Ω(2n).

Proof. Suppose S = {s1, s2, . . . , sm}, where Prob(si) = pi. Define a 2n by m matrix U = (UY ,sj )

whose rows are indexed by the family of all subsets Y of [n], and whose columns are indexed by
the points of S as follows: UY ,sj = XY (sj)

√
pj .

Put A = UUT and note that for every two subsets Y1, Y2 of [n],

AY1 ,Y2
= Prob[XY1⊕Y2

= 1] − Prob[XY1⊕Y2
= −1].

Therefore, all diagonal entries of A are 1, whereas all off-diagonal entries are, in absolute value,
at most ε. By Theorem 2.1, if ε � 2−n/2 then

m � rank(A) � Ω

(
log(2n)

ε2 log(1/ε)

)
,

completing the proof for ε � 2−n/2. The result for ε < 2−n/2 follows from the case ε =

2−n/2.
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10 N. Alon

Remark. A similar proof implies that the size m of any (not necessarily uniform) sample space
that supports a family of n random variables in which every set of k is ε-biased, where ε �
[
(

n
�k/2�

)
]−1/2, satisfies

m � Ω

(
k log(n/k)

ε2 log(1/ε)

)
.

As is the case with Theorem 7.1, this is tight, up to the log(1/ε)-term. The proof (for the uniform
case) appears in [2].

7.2. Nearly min-wise independent permutations

A family F of permutations of [n] = {1, 2, . . . , n} is an ε-approximate k-restricted min-wise
independent family (or an (ε, k)-min-wise independent family, for short) if, for every non-empty
subset X of at most k elements of [n], and for any x ∈ X, the probability that, in a random
element π of F , π(x) is the minimum element of π(X), deviates from 1/|X| by at most ε/|X|.
This notion can be defined for the uniform case, when the elements of F are picked according
to a uniform distribution, or for the more general, biased case, in which the elements of F are
chosen according to a given distribution D.

The notion of (ε, k)-min-wise independent families was introduced by Broder, Charikar, Frieze
and Mitzenmacher [6], motivated by applications in data mining. It is shown in [6] that there are
such families of size at most O

(
k2

ε2
log

(
n
k

))
and that each such family must be of size at least

Ω
(
k2(1 −

√
8ε)

)
in the uniform case, and at least

Ω

(
min

{
k2k/2 log

(
n

k

)
,
log (1/ε)(log n − log log(1/ε))

ε1/3

})

in the biased case.
The lower estimates are improved in [5], where the following two results are proved. Note

that both supply lower bounds for the biased case that improve even the known bounds for the
uniform case.

Theorem 7.2. For any 1/3 > ε > 0 and k � 3, and all sufficiently large n, the following holds.
Let F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a
distribution D on F . Then

|F | � Ω

(
k

ε2 log(1/ε)
log n

)
.

Theorem 7.3. For any 1/3 > ε > 0 and k � 3, and all sufficiently large n, the following holds.
Let F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a
distribution D on F . Then

|F | � Ω

(
k2

ε log(1/ε)
log n

)
.

The proofs are based on Theorem 1.1, together with some additional linear-algebra arguments.
Here is the proof of the first result.
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Perturbed Identity Matrices Have High Rank: Proof and Applications 11

Proof of Theorem 7.2. Let F be an (ε, k)-min-wise independent family of permutations of
[n], with respect to the distribution D, where ε > 0, k � 3 and n is large. Put s = k/3, L = n/s

and partition [n] into L pairwise disjoint sets X0, X1, . . . , XL−1, each of size s, where X0 =

{1, 2, . . . , s}. Put F = {π1, π2, . . . , πd}, m = L − 1, and define, for each h ∈ [s], an m by d matrix
U(h) = (u(h)

ij ) as follows:

u
(h)
ij =

{ √
ProbD(πj) if min(πj(X0 ∪ Xi)) = πj(h),

0 otherwise.
(7.1)

Define V (h) = (v(h)
ij ) = U(h)(U(h))T and observe that v(h)

ii is precisely the probability that h is
the minimum element of X0 ∪ Xi (according to the distribution D on F), whereas for i �= j,
v
(h)
ij is the probability that h is the minimum element of X0 ∪ Xi ∪ Xj according to the same

distribution. By the assumption on F and D, each v
(h)
ii deviates from 1

2s
by at most ε

2s
, and each

v
(h)
ij for i �= j deviates from 1

3s
by at most ε

3s
. In addition, by the definition of the matrices U(h),

for any distinct h, g ∈ [s], U(h)(U(g))T = 0.

Let U be the ms by d matrix defined by UT = [(U(1))T , (U(2))T , . . . , (U(s))T ]. Then V =

UUT is a block-diagonal matrix whose blocks are the matrices V (h), implying that its rank is
the sum of ranks of the matrices V (h).

The crucial claim now is that the rank of each matrix V (h) is at least Ω
(

1
ε2 log(1/ε)

logm
)
. Indeed,

if we subtract from V (h) the rank-one matrix in which every entry is exactly 1
3s

, and multiply the
result by 6s, we get a matrix in which each diagonal entry is at least 1

2
, and each off-diagonal

entry is in absolute value at most 2ε. As the above subtraction and multiplication can change
the rank by at most 1, the assertion of the claim follows from Theorem 1.1. Combining this
with the fact that for all large n (n > k2 will suffice here), logm > 0.5 log n, and the fact that
|F | = d � rank(V ), the assertion of the theorem follows. �

The proof of Theorem 7.3 is similar, with an extra combinatorial argument. The idea is to
replace the family of sets {X1, X2, . . . , XL−1} in the proof above by a larger family of s-subsets
of [n] − X0, so that the intersection of every two of them is at most εs. The full details appear
in [5].

7.3. Min-wise independence for sets of size exactly k

Call a family of permutations F of [n], with a distribution D, exactly k min-wise independent if,
for every subset X of exactly k elements of [n] and every x ∈ X, when a random permutation π

is chosen according to the distribution D, then ProbD(min π(X) = π(x)) = 1
|X| .

In case the above holds for every subset X of at most k elements of [n], F is called at most
k min-wise independent. Note that this last notion coincides with the notion of (ε, k)-min-wise
independent family considered in Section 7.2, for the special case ε = 0. There are several papers
dealing with the minimum possible cardinality of a family of at most k min-wise independent
permutations. In [10] it is shown, slightly improving estimates of [17] and [16], that any such
family must be of size at least

∑(k−1)/2
i=0

(
n−1
i

)
for odd k, and of size at least

∑k/2−1
i=0

(
n−1
i

)
+(

n−2
k/2−1

)
for even k. On the other hand, it is known (see [16], slightly improving [6]), that there

are such families of size at most 1 +
∑k

j=2(j − 1)
(
n
j

)
.
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12 N. Alon

Much less is known about the minimum possible size of exactly k min-wise independent famil-
ies of permutations of [n]. The best-known upper bound is 1 + (k − 1)

(
n
k

)
, proved in [16], which

is similar to the bound for at most k min-wise independent families, whereas the best-known
lower bound is only �log2 log2(n − k + 2)� + k − 2. Indeed, one of the two open problems
mentioned in [16] is the problem of improving this lower bound. This is done in the following
theorem.

Theorem 7.4. For any n and k � 3, and for any exactly k min-wise independent family of
permutations of [n] F with respect to a distribution D,

|F | � (k − 2)(n − 2k + 3)

k − 1
.

While this bound is still significantly smaller than the upper bound, it is far better than the
double logarithmic known bound, and for every fixed k, it grows linearly with n. The proof, given
below, does not apply Theorems 1.1 and 2.1, but we include it here as it is similar to the proof of
Theorem 7.2, combining the basic approach therein with a simple probabilistic argument.

Proof of Theorem 7.4. Let F be an exactly k min-wise independent family of permutations
with respect to a distribution D, where k � 3. Clearly, for every subset Y of k − 1 elements of
[n] there is at least one element y ∈ Y such that

ProbD(min π(Y ) = π(y)) � 1

k − 1

(
>

1

k

)
.

It follows that if one chooses, randomly and uniformly, a subset Y ⊂ [n] of cardinality k − 1,
and a member y ∈ Y , then with probability at least 1/(k − 1), the probability (with respect to D)
that min π(Y ) = π(y) exceeds 1/k.

Let X be a random subset of cardinality k − 2 of [n], and define, for each x ∈ X, a set Yx as
follows:

Yx =

{
y ∈ [n] − X : ProbD(min π(X ∪ {y}) = π(x)) >

1

k

}
.

By linearity of expectation, the expected value of
∑

x∈X |Yx| is at least (k−2)(n−k+2)
k−1

, and thus there
exists an X for which the size of

∑
x∈X |Yx| is at least this fraction. Fix such a set X, suppose

F = {π1, . . . , πd} and define, for each x ∈ X, a |Yx| by d matrix U(x) = (u(x)
y,j ) where y ∈ Yx and

1 � j � d as follows:

u
(x)
y,j =

{ √
ProbD(πj) if min(πj(X ∪ y)) = πj(x),

0 otherwise.
(7.2)

As in the proof of Theorem 7.2, define V (x) = (v(x)
y,y′ ) = U(x)(U(x))T and observe that v(x)

y,y is
precisely the probability that x is the minimum element of X ∪ {y} (according to the distribution
D on F), whereas for y �= y′, v(x)

y,y′ is the probability that x is the minimum element of X ∪ {y, y′}
according to the same distribution. By the definition of Yx, and the assumption on F and D,
each diagonal entry of V (x) is strictly greater than 1/k, whereas each other entry is exactly 1/k.
Therefore, the rank of V (x) is at least |Yx| − 1 (as subtracting 1/k from each of its entries creates
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a matrix of full rank). In addition, note that the definition of the matrices U(x) implies that for
any distinct x, x′ ∈ X, U(x)(U(x′))T = 0.

Put p =
∑

x∈X |Yx| and let U be the p by d matrix obtained by putting all matrices U(x),
(x ∈ X) together, one on top of the other. Then V = UUT is a block-diagonal matrix whose
blocks are the matrices V (x), implying that its rank is the sum of ranks of the matrices V (x).

Since the rank of each V (x) is at least |Yx| − 1, and∑
x∈X

|Yx| � (k − 2)(n − k + 2)

k − 1
,

it follows that

|F | = d � rank(V ) � (k − 2)(n − k + 2)

k − 1
− (k − 2) =

(k − 2)(n − 2k + 3)

k − 1
,

completing the proof. �

Remark. Note that k is a trivial lower bound for the size of any exactly k min-wise independent
family of permutations. Indeed, fix an arbitrary set X of k elements, and observe that each x ∈ X

has to appear first among the elements of X in at least one of the permutations. Therefore, by the
last theorem, Ω(n) is a lower bound for the size of any exacly k min-wise independent family of
permutations of [n], for all n � k � 3. (For k = 2 and any n the two permutations 1, 2, . . . , n and
n, n − 1, . . . , 1 suffice, of course.)

8. Concluding remarks

The proof of Theorems 1.1 and 2.1 can be easily modified to supply a more general result, as
follows.

Theorem 8.1. Let B = (bi,j) be an n by n real, symmetric matrix of rank d, and let P (z) be an
arbitrary polynomial of degree k. Then the following inequality holds:(

d + k

k

)
� [

∑n
i=1 P (bi,i)]

2∑n
i,j=1 P

2(bi,j)
.

Indeed, this follows by noticing that the proof of Lemma 2.2 implies the known fact that the
rank of any real, symmetric matrix is at least the ratio between the square of its trace, and the
trace of its square, and by applying this fact, together with the assertion of Lemma 2.3, to the
matrix P (bi,j). As mentioned in Section 2, here too the symmetry assumption is not very crucial,
as any matrix can be made symmetric by averaging it with its transpose, a process that does not
change the rank by more than a factor of 2, maintains the trace, and does not increase the trace
of the square.

The main open problem concerning the assertion of Theorems 1.1 and 2.1 is whether it
is possible to remove the log(1/ε)-term in their statement when n is sufficiently large as a
function of ε. If possible, this would be tight up to a constant factor, as shown by many of the
applications described throughout the paper, where the gap between the upper and lower bounds
is Θ(log(1/ε)). Note that when ε = 1√

n
, the log(1/ε)-term cannot be omitted.
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14 N. Alon

In most of the proofs throughout the paper, and in particular, in the proof of Theorem 2.1, we
made no attempt to optimize the absolute constants involved. In some cases these constants may
be of interest, and it is thus worthwhile to note that the estimates can be improved by replacing
the polynomial P (z) = zk used in the proof of Theorem 2.1 by an appropriate Chebyshev poly-
nomial. Indeed, the proof suggests that the best choice of a polynomial P of degree k for which
we consider the matrix P (bi,j) is the polynomial of degree P for which the maximum value of
|P (z)| over z ∈ [−ε, ε] is minimum, among all polynomials P satisfying P (1) = 1. It is known
(see [18]) that the optimal polynomial P for this problem can be obtained as follows.

The Chebyshev polynomials of the first kind, Tk(z), can be defined by T0(Z) = 1, T1(z) =

z and Tk+1(z) = 2zTk(z) − Tk−1(z) for all k � 1. Equivalently, Tk(z) = cosh(k cosh−1(z)),
where cosh(z) = ez+e−z

2
. It is known that if [a, b] is a real interval where b > a > 0, then among

all polynomials t of degree k that satisfy t(0) = 1, the one for which the maximum of the absolute
value in [a, b] is minimal, is the polynomial

tk(z) =
Tk(

a+b−2z
b−a

)

Tk(
a+b
b−a

)
.

For this polynomial,

max
z∈[a,b]

|tk(z)| = tk(a) =
1

Tk(
a+b
b−a

)
.

It follows that, for our purpose, the best polynomial of degree k is obtained by taking a =

1 − ε, b = 1 + ε and Pk(z) = tk(1 − z) for tk as above. Therefore, Pk(1) = 1, and the max-
imum value of |Pk(z)| in [−ε, ε] is Tk(1/ε)

−1. Since cosh−1(z) = ln(z +
√
z2 − 1) and Tk(z) =

cosh(k cosh−1(z)), it is not difficult to check that, for small ε, Tk(1/ε)
−1 is roughly εk

2k−1 for
all k � 1. It follows that by using this polynomial instead of the polynomial zk in the proof of
Theorem 2.1, if ε is small and k is large, one can roughly replace ε by ε/2 in the conclusion of
the theorem, improving its estimate by roughly a factor of 4. This does not shed any light on
the problem of deciding whether or not the log(1/ε)-term in the statement of the theorem can be
removed for sufficiently large n.
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randomness for finite sequences: Minimal values. Combin. Probab. Comput. 15 1–29.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548307008917
Downloaded from https://www.cambridge.org/core. Stanford Libraries, on 30 Mar 2022 at 20:20:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548307008917
https://www.cambridge.org/core


Perturbed Identity Matrices Have High Rank: Proof and Applications 15

[5] Alon, N., Itoh, T. and Nagatani, T. (2007) On (ε, k)-min-wise independent permutations. Random
Struct. Alg. 31 384–389.

[6] Broder, A., Charikar, M., Frieze, A. and Mitzenmacher, M. (2000) Min-wise independent
permutations. J. Comput. System Sci. 60 630–659. A preliminary version appeared in Proc. 30th
Annual ACM Symposium on Theory of Computing (1998), pp. 327–336.
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[15] Matoušek, J. (2002) Lectures on Discrete Geometry, Springer.
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