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EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnson1 and Joram L:lt1dens1:1'auss2

INTRODUCTION

In this note we consider the following extension problem for Lipschitz
functions: Given a metric space X and n =2, 3, 4, ... , estimate the
smallest constant L = L(X, n) so that every mapping f from every n-element

subset of X into 82 extends to a mapping E from X into 82 with

(Here "gNBip is the Lipschitz constant of the function g.) A classical re-

sult of Kirszbraun's [14, p. 48] states that L(Bz, n) =1 for all n, but

it is easy to see that L(X, n) +» as n -+ « for many metric spaces X.
Marcus and Pisier [10] initiated the study of L(X, n) for X = Lp' (For

brevity, we will use hereafter the notation L(p, n) for L(Lp(O,l), n).)

They prove that for each 1 < p < 2 there is a constant C(p) so that for
n= 2, 3) 4’ s 9

1/p - 1/2
L(p, n) = C(p) (Log n) /e / .
The main result of this note is a verification of their conjecture that for

some constant C and all n =2, 3, 4, , , ,
L(X, n) < C(Log n) 1/2

for all metric spaces X. While our proof is completely different from that
of Marcus and Pisier, there is a common theme: Probabilistic techniques de-
veloped for linear theory are combimed with Kirszbraun's theorem to yield ex-
tension theorems.

The main tool for proving Theorem 1 is a simply stated elementary geome-

tric lemma, which we now describe: Given n points in Euclidean space, what
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190 JOHNSON AND LINDENSTRAUSS

is the smallest k = k(n) so that these points can be moved into k-dimensional
Euclidean space via a transformation which expands or contracts all pairwise
distances by a factor of at most 1 + €? The answer, that k = C(¢) Logn, is
a simple consequence of the isoperimetric inequality for the n-sphere in the
form studied in [2].

It seems likely that the Marcus-Pisier result and Theorem 1 give the right
order of growth for L(p, n). While we cannot verify this, in Theorem 3 we get
the estimate

1/p - 1/2
) (1=sp<2)

Log n
> —
L(p, n) 2 & (Log Tog o

for some absolute constant & > O, (Throughout this paper we use the conven-
tion that Log x denotes the maximum of 1 and the natural logarithm of x.)

This of course gives a lower estimate of

A Log n 1/2
Log Log n
for L(», n). That our approach cannot give a lower bound of

8(Log n)l/p -1/2

theorem for mappings into 82 whose domains are ¢-separated.

for L(p, n) is shown by Theorem 2, which is an extension

The minimal notation we use is introduced as needed. Here we note only
that BY(y, e) (respectively, bY(y, €)) 1is the closed (respectively, open)
ball in Y about y of radius g. If y =0, we use BY(e) and bY(s),
and we drop the subscript Y when there is no ambiguity. S(Y) is the unit
sphere of the normed space Y. For isomorphic normed spaces X and Y, we

let
d(x,v) = inf |7 JT7Y,

where the inf is over all invertible linear operators from X onto Y. Given

a bounded Banach space valued function f on a set K, we set

I£ll, = sup [[£(x)
x€K

1. THE EXTENSION THEOREMS

We begin with the geometrical lemma mentioned in the introduction.

1EMMA 1. For each 1 > T > 0 there is a constant K = K(t) > 0 so that if

A cln A=n for some n=2, 3, ..., then there is a mapping f from A

2,
onto a subset of zk (k = [K log n]) which satisfies

2

n
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EXTENSIONS OF LIPSCHITZ MAPPINGS 191

-1 1+

€1,

PROOF., The proof will show that if one chooses at random a rank k orthogonal
projection on Zn, then, with positive probability (which can be made arbitra-
rily close to one by adjusting k), the projection restricted to A will
satisfy the condition on ;. To make this precise, we let Q be the projec-
tion onto the first k coordinates of £ and let o be normalized Haar

2
measure on 0(n), the orthogonal group on 8;. Then the random variable

£: (0(n), o) - L(zg)

defined by
f(u) = U*x QU

determines the notion of "random rank k projection." The applications of
Levy's inequality in the first few self-contained pages of [2] make it easy to
check that f(u) has the desired property. For the convenience of the reader,
we follow the notation of [2].
Let |||+||] denote the usual Euclidean norm on B" and for 1 <k <n
n
and x € R set

1/2
x(1)2 ,
1

nMw

r(x) = rk(x) =V n
i

which is equal to
Voo []ex] ]

for our eventual choice of k = [K log n]. Thus r(¢) 1is a semi-norm on 32

which satisfies
) sV [|[x]]] (x €.

(In [2], (<) 4is assumed to be a norm, but inasmuch as the left estimate
al|||x|]| = r(x) 1in formula (2.5) of [2] is not needed in the present situation,
it is okay that r(s¢) 1is only a semi-norm.)

Setting

X - n-1
o : X, yEA; x#y )cCsS

we want to select U € 0(n) so that for some constant M,
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192 JOHNSON AND LINDENSTRAUSS

M(1 -1) = r(Ux) <M1 +7) (x € B) .

Let M be the median of r(s) on Sn-l, so that

pn_l[x € Sn-1 s r(x) = Mr] > 1/2

and
b Ixes"t o r sM)s1/2
n-1 ) - Vet T
where Hoo1 is normalized rotationally invariant measure on Sn-l.
We have from page 58 of [2] that for each y € S“_l and ¢ > 0,

2
o[U € 0(n) : M -Vaes= r(Uy) SM +Vnelz1l-4exp ('“; )

Hence

(1.1) ofu € O(n) : M_ - Vae

IA

r(Uy)) M +Vne forall y¢B]z

v

2
1 - 2n(n+l) exp (—n; ) .

By Lemma 1.7 of [2], there is a constant

© 2
Cs4 z (w) e™/2
m=1
so that
(1.2) |/ r(x) dp _,(x) -M [ <C.
S
n-1
We now repeat a known argument for estimating [ r(x) duh_l(x) which uses
only Khintchine's inequality. sn—l
For 1 =k =n we have:
k
Av/ ]z £x(D)] dp (x) =
+ sn-l i=1 n-1
k
=Av [ l<x, 2 £6,>]| du (%)
+ sn-l {121 i n-1
by the rotational
=Vk fn-1|< X, 61 >l dun-l(X) *
S invariance of un—l

Setting

o = én—l < x, 51 >| dun_l(x) .
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EXTENSIONS OF LIPSCHITZ 193

we have from Khintchine's inequality that for each 1= k =< n,
vV nk a = én—l rk(x) din_l(x) < V2nk a -

(We plugged in the exact constant of V 2 in Khintchine's inequality calcu-
lated in [5] and [13], but of course any constant would serve as well.)

Since obviously rn(x) =V n, we conclude that for 1<k <n

(1.3) Vk/ =7/

Sn_l rk(x) dun_l(x) =Vk.

Specializing now to the case k = [K log n], we have from (1.2) and (1.3)
that

V k/3 =M

r

at least for K log n sufficiently large. Thus if we define

e =TV k/3n

we get from (1.1) that

o [U €0(n) : (1 - T)Mr sSr(Uuy) = Q1+ T)Mr for all y € B]

tv

Tz k
1 -2n(n+1) exp (— '—1—8—>

v

2
1 -~ 2n(n +1) exp (— E___Igié_og__n_)

which is positive if, say,
2
K = (10/1)°. a

It is easily seen that the estimate K log n in Lemma 1 cannot be im-

proved. Indeed, in a ball of radius 2 in 5; there are at most 4k vectors

{xi} so that Hxi - xjH > 1 for every i # 3 (see the proof of Lemma 3
below). Hence for T sufficiently small there is no map F which maps an
orthonormal set with more than 4k vectors into a k-dimensional subspace of

82 with

1+7T

Py, 157y, S35 -

We can now verify the conjecture of Marcus and Pisier [10].
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194 JOHNSON AND LINDENSTRAUSS

THEOREM 1. Sup (log n)~ l/ZL

n=2, 3, ...
constant K so that for all metric spaces X and all finite subsets M of X

(¢, n) < «, In other words: there is a

has a Lipschitz exten-

(card M = n, say) every function f from M into ¢
sion f : X - 82 which satisfies

2

5y, = x Vo a el

PROOF. Given X, MCc X with card M=n, and f : M~ 32, set A = f [M].

= 1/2 to get a one-to-one function g-l from A onto
(where k =K log n) which satisfies

We apply Lemma 1 with =<
a subset g-l[A] of &:

lg™,. <15 gl

<
tip ~ =3.

Lip

By Kirszbraun's theorem, we can extend g to a function § : 32 -+ 32 in such

a way that
<
Hg”zip =3.
k k
Let I : 82 ~+ £_ denote the formal identity map, so that

Izl =1, 7= V.
Then

h=Ig f, h:M~->2

has Lipschitz norm at most ”f”Zip’ so by the non-linear Hahn-Banach theorem

(see, e.g., p. 48 of [14]), h can be extended to a mapping

h: X~ Zi
which satisfies
<
Ihllgy, < Nl

Then

~ ~ g ~

f=gl h; f:X~+ 42
is an extension of f and satisfies

< * < o
gl gy, =3 VE NEllyy, = 3K Viegn liell,,
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EXTENSIONS OF LIPSCHITZ MAPPINGS 195

Next we outline our approach to the problem of obtaining a lower bound for

L(~®,n). Take for f the inclusion mapping from an €-net for SN.1 into 3;‘,

and consider BI; isometrically embedded into L A Lipschitz extension of f

00 *
to a mapping o L, - 82 should act like the identity -51;, so the techniques

of [8] should yield a linear projection from L  onto 51; whose norm is of

order ]|f”51p' Since 51; is complemented in L, only of order V N and there
are €-nets for SN_l of cardinality n = [A/E]N, we should get that

Nt Log n 1/2
o > > —
L(®*,n) 2V N2 6 T log €

In Theorem 2 we make this approach work when ¢ is of order N-z, so we get

' L 1/2
L(°°,n) > §! _og_n_
Log Log n
That the difficulties we incur with the outlined approach for larger values

of € are not purely technical is the gist of the following extension result.

(*)THEOREM 2. Suppose that X 1is a metric space, AC X, f : A~ 52 is
Lipschitz and d(x,y) 2 € > 0 for all x # y € A. Then there is an extension

f:X-’i2 of f so that

Nel,, < 82y

¢ip T e ip °

where D is the diameter of A.

PROOF. We can assume by translating f that there is a point 0 € A so that
f(0) =0. Set B =A~ {0} and define

F:A-*ﬂll3 by

6b, b#0
F (b) = .
0, b=20
Define
G : BB-rd
. 2
by

(*) See the appendix for a generalization of Theorem 2 proved by Yoav Benyamini.,
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196 JOHNSON AND LINDENSTRAUSS

Then

GF=f, G is linear with

llél = o |I£]l and IIFIIMp = 2/e.

eip’

A weakened form of Grothendieck's inequality (see section 2.6 in [9])

yields that G (as any bounded linear operator from an Ll space into a

Hilbert space) factors through an £_(N) space:
¢=uJ, 3l =1, [l =3 ldl,
o @) c L (R) - &
J: b L @), H : ”(N)->2.
By the non-linear Hahn-Banach Theorem the mapping J F has an extension
E: X~ ZNGK) which satisfies
< <
lEll g = 19 Py, < 2/,

Then f =HE extends f and [f] 5<§2 el as desired. o

eip’

For the proof of Theorem 3, we need three well known facts which we state

as lemmas.

LEMMA 2. Suppose that Y, X are normed spaces and f : S(Y) - X 1is Lipschitz

with f (0) = 0. Then the positively homogeneous extension of f, defined for
y €Y by )

£ ) = lyll f(ﬂ—z-”), (y # 0); £ 0 =0

is Lipschitz and

€1y, =2 lEl,, + Nl

2ip

PROOF. Given y,, vy, €Y with 0 < HylH < HyZH,

fop - 8 X e o Iyl 11 £{pky) - £l
I£¢r) = £l = [] lly,ll fWI' - Iy, I W 1+ ly,l 11 2 TT;'J
71 Y1 Ys
= ly, -y I} N TTy’l'H I+ ly, I Ilfllgip I W-W i
lly, I
= vy = Yol IEN, * 1€l pep [ '{m y; - ¥y |l
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EXTENSIONS OF LIPSCHITZ MAPPINGS 197

Iy,
18l llyy = vl + I8l (ﬁﬁ“ )”ﬁ”+hl-h”

IA

1A

. [s]

Qmu+zum“9 Iy, - v,

LEMMA 3. If Y 1is an n-dimensional Banach space and 0 < e, then S(Y) ad-

mits an g-net of cardinality at most (1 + 4/s)n.

Hh

PROOF. Let M be a subset of S(Y) maximal with respect to "||x-y|| = ¢ for

all x#y € M",
Then the sets
b(y, €/2) N s(Y)», (y € M)
are pairwise disjoint hence so are the sets
b(y, e/4), (y €M).
Since these last sets are all contained in b(l + e¢/4), we have that

card M . vol b(e/4) < vol b(1l + e/4)

4 n
card M = . (1 + 5/4{] . o

LEMMA 4., There is a constant 6 > 0 so that for each 1 = p < 2 and each

so that

N=1, 2, ..., Lp contains a subspace E such that

d(E, eg) <2

and every projection from Lp onto E has norm at least

5N 1/p - 1/2 .

PROOF. Given a finite dimensional Banach space X and 1< p < », let

Yb(x) =dinf {|IT] /S]] : T : X » Lp, S:Lp +X, ST= Ix}.

So yo(X) 1is the projection constant of X, hence by [4], [12]
N N
Yl(82) = Y,(Ez) =V 2n/n .

This gives the p = 1 case.
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198 JOHNSON AND LINDENSTRAUSS

For 1< p< 2 we reduce to the case p = 1 by using Example 3.1 of [2],
which asserts that there is a constant C< ® so that for 1= p< 2 ¢CN
P

contains a subspace E with d(E, 5?) = 2. Since, obviously,

ae, ¢ = (@t 1P

we get that if E is K-complemented in 5gN, then

a-1/2 1/2 CN

(2n) 1

_ N N CN
=7 (¢ = dE, £) a7, £ K

2 (et - Ve, o

IA

The next piece of background information we need for Theorem 3 is a linear-

ization result which is an easy consequence of the results in [8].

PROPOSITION 1. Suppose X< Y and Z are Banach spaces, f : Y Z is

Lipschitz, and U : X+ Z 1is bounded, linear. Then there is a linear operator
G : zx »~ Y* so that |6l < “f”&- and

IR, 6 - usll = lig), - ully, ,

where R

2 is the natural restriction map from Y* onto X¥*,

REMARK. Note that if Z is reflexive, the mapping F = G*IY : Y+ Z satisfies
< - S -
el = ”f”eip and ”F[X ull ”flx U”eip.

PROOF. We first recall some notation from [8]. If Y 1is a Banach space, Y#

denotes the Banach space of all scalar valued Lipschitz functions y# from Y
for which y#(O) = 0, with the norm “y#ulip‘ There is an obvious isometric

*
inclusion from Y into Y#. For a Lipschitz mapping f : Y > 2, Z a normed

space, we can define a linear mapping

Given Banach spaces X € Y, Theorem 2 of [8] asserts that there are norm one

linear projections

so that
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EXTENSIONS OF LIPSCHITZ MAPPINGS 199

where Ry is the restriction mapping from Y# onto X#. Thus if

XcyY, f, U, Z are as in the hypothesis of Proposition 1, the linear mapping

PY f# satisfies

# # #
ley €71 =< lI€ll,;» R, By £ = Py Ry £7.
Since U: X -+ 2 1is linear,
* #
U = PX U
so
S T t_ ot
IRy By £7 = Ul = [[Py(R £7 - UD)]|
* *
siry £ - ofl - ewn Ry of
* *
z € s(z)
* *
= - < -
sup |[|(z f)lx z U = “flx U“Zip' o

* *
z €58(z2)
The final lemma we use in the proof of Theorem 3 is a smoothing result for

homogeneous Lipschitz functions.

LEMMA 5. Suppose XC Y and Z are Banach spaces with dim X = k < =,

F: Y-+ 2 is Lipschitz with F positively homogeneous (i.e. F(Ay) = X F(y)

for A= 0, y€Y) and U: X+ Z 1is linear. Then there is a positively

homogeneous Lipschitz mapping

F: Y-+ 2 which satisfies

< (8k + 2) |F

[s(x) ~ U|s(x) I

2) |Fl p 54 ¥l

eip’
PROOF. For y € S(Y) define
Fy = fo(l)F(yﬂ) dp.(x)
where p(-) 1is Haar measure on X (=an) normalized so that

For yl, v, € S(Y) we have
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200 JOHNSON AND LINDENSTRAUSS
MH—%hus%ﬂnwwl+m-Fw2+mnmu)

= ¥y, By - vyl

so
1Fi0p = 170,
For x;, X, € 8(X) with Hxl - x2H =85> 0 we have, since U is linear,
that
IF - wx, - (F - Oyl =
s F(x, + x)du(x) - [ Ulx, + x)du(x) - f F(x, + x)du(x) +
By(1)" 1 By(1) 71 BX(l) 2
S U(x, + x) du(x)| =
Bx(l) 2
<7 [Fx - Uxll du(x) =
Bx(xl; 1) A Bx(xz; 1)
< sup {[Fx - Uxl| p [B,(x,; 1) A By(x,; 1]
x € B.(2) X1 X*72
X
since F 1s posi-
= 2sup ||Fx - Ux|| pn [Bx(xl; 1) & By(xy; 1]
X € Bx(l) tively homogeneous
Since

Bx(xl; 1 A BX(xz; 1) c [Bx(xl; 1) ~ Bx(xl; 1-8)1 U [Bx(xz; 1) ~ Bx(xz; 1-8)1
we have if § <1 that

ulBy(xys 1) 8 By(xys D1 = 201 - (1-8)"]

=2k 3§
and hence for all Xps X, € S(X) that
I(F - w % - (F-0 x| =4k|F

,S(x) - U]S(X)” ”xl = xz”

whence
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EXTENSIONS OF LIPSCHITZ MAPPINGS 201

< 4k ||F

”F]s(x) - Uls(x)“eip [s(xX) Uls(x)”w'

Finally, note that the positive homogeniety of F implies that
Al =< d § -U <=2 |F -U M.

It now follows from Lemma 2 that the positively homogeneous extension F

of F satisfies the conclusions of Lemma 5. o

THEOREM 3. There is a constant T > 0 so that for all n =2, 3, 4, ... and

all 1 =p< 2,

1/p - 1/2
) Log n
L(p,n) = T (Log Log n)

REMARK. Since L(»,n) = L(1,n), we get the lower estimate for L(®,n) men-

tioned in the introduction.

PROOF. Given p and n, for a certain value of N = N(n) to be specified

later choose a subspace E of Lp with d(E, Eg) <=2 and E only

9] Nl/p - l/z-complemented in Lp (Lemma 4). For a value € =¢(n) > 0 to

be specified later, let A be a minimal €-net of S(E), so, by Lemma 3,
N
card A = (1 + 4/¢e) .
One relation among n, N, ¢ we need is
N
(1.4) (1 +4/e)” +1 =n.

Let f : AU{O} - E be the identify map. Since d(E, Zg) < 2, we can by

Lemma 2 get a positively homogeneous extension E : Lp -+ E of f so that

IEl,, =6 Lp,n).

2ip

Since f(a) = f(a) =a for a € A and A is an €-net for S(E), we get that
for x € S(E),

l£(x) - xll = (6 L(p,n) + 1) €.
Therefore, from Lemma 5 we get a Lipschitz mapping f : Lp -+ E which satisfies

IEl,. < 24 L(p,n)

¢ip

(1.5) I£)g - Tgl < (8N + 2)(6 L(p,m) + De.
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202 JOHNSON AND LINDENSTRAUSS

Note that if
(1.6) (8N + 2)(6 L(p,n) + 1)e < 1/2,
(1.5) implies that there is a linear projection from Lp onto E with norm at

most 48 L(p,n), so we can conclude that

L(p,n) > 5/48 N/P ~1/2

Finally, we just need to observe that (1.4) and (1.6) are satisfied (at

least for sufficiently large n) if we set

_ -2 - Log n
€ = Log n, N 7 Tog Log 0 °

2. OPEN PROBLEMS.

Besides the obvious question left open by the preceding discussion (i.e.
whether the estimate for L(«,n) given in Theorem 1 is indeed the best pos-
sible), there are several other problems which arise naturally in the present

context. We mention here only some of them.

PROBLEM 1. 1Is it true that for 1 < p < 2, every subset X of LP(O,I), and

every Lipschitz map f from X into 25 there is an extension f of f

from Lp(O,l) into 8; with

(2.1) By = €Y Nl kP~ 12

where C(p) depends only on p?

A positive answer to problem 1 combined with Lemma 1 above will of course
provide an alternative proof to the result of Marcus and Pisier [10] mentioned
in the introduction. The linear version of problem 1 (where X 1is a subspace

and f a linear operator) is known to be true (cf. [7] and [3]).

PROBLEM 2., What happens in the Marcus-Pisier theorem if 2 < p < «»? Is the

Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true?

In other words, is it true that for 2 < p < » there is a c(p) such that

for every Lipschitz map f from a subset X of Lp(O,l) into 32 there is

a Lipschitz extension f from Lp(O,l) into ¢, with

1B,y = el
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EXTENSIONS OF LIPSCHITZ MAPPINGS 203

PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces

different from Hilbert spaces? The most interesting special case seems to be

concerning the spaces g:. It is well known that every finite metric space

X = {xi}z-l embeds isometrically into 5: (the point x, is mapped to the

i
. n .
n-tuple {d(xl, xi), d(xz, xi),..., d(xn, xi)} in ¢£_). Hence in view of

Lemma 1 it is quite natural to ask the following. Does there exist for all

e > 0 (or alternatively for some ¢ > 0) a constant K(¢) so that for every

metric space X with cardinality n there is a Banach space Y with

dim Y < K(e)logn and a map f from X into Y so that
-1
I £l ?
hfdeip “f ”Eip S 1 + €1
A weaker version of Problem 3 is

~

PROBLEM 4. It is true that for every metric space X with cardinality n

there is a subset X in 82 and a Lipschitz map F from X onto X so that

-1 —_—
(2.2) ”F”Zip |F H“p < KVlog n

for some absolute constant K?

Since for every Banach space Y with dim Y = k we have
da(y, 32) =V k (cf. [6]) it is clear that a positive answer to problem 3 im-
plies a positive answer to problem 4. V. Milman pointed out to us that it
follows easily from an inequality of Enflo (cf. [1]) that (2.2), if true, gives

the best possible estimate. (In the notation of [1], observe that the "m-cube"
m
xe = (el’ 921"" em) (e E {-l, l} )

in ZT has all "diagonals" of length 2m and all "edges" of length 2, so that
m

if F 1is any Lipschitz mapping from these 2" points in il

into a Hilbert
space, the corollary in [1] implies that

=m ' “))

-1 1/2
15y, =

¥l

3. APPENDIX.

After this note was written, Yoav Benyamini discovered that Theorem 2 re-
mains valid if 62 is replaced with any Banach space. He kindly allowed us to

reproduce here his proof. The main lemma Benyamini uses is:

LEMMA 6. Let T be an indexing set and let {eY}Y ¢ T be the unit vector

basis for co(T). Set
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204 JOHNSON AND LINDENSTRAUSS

A= {a eY t0=a=1l; vy €T}

B = conv A (= positive part of B& aT).
1

Then

(i) there is a retraction G from ¢ (T) onto B which satisfies

6l 5 = 2

(ii) there is a mapping H from ¢_(T') 4into A which satisfies
HHHgip <4 and HeY = eY for all y €T.

PROOF. Since the mapping x - X is a contractive retraction from ¢£_(T')
onto its positive cone, Zw(F)+; to prove (i) it is enough to define G only
+
on ¢ _(T) . .
For y € ¢ _(T) , let

g(y) = inf {t : (v - 7], = 1}

where e € ¢£_(T) 1is the function identically equal to one and ”-”1 is the
usual norm in El(P). Clearly the inf is actually a minimum and

0 = g(y) = |[lyll,. Note that

[g(y) - g(2)| =< |ly-z.

Indeed, assume that g(y) = g(z). Then

y - [8(2) +[ly-zll_ el =y - glz)e + z -y = z - g(z)e

and hence
I(y-e(z) + lly-2ll Je) "Il = 1;
that is
g(y) = g(z) + |ly-z .
Now set for y € £_(I)7"
6y = (v - gwe’.

To prove (ii), it is enough, in view of (i), to define H on B with

1h:! 2, For y €B, y-= {y(Y)}Y ¢’ defined Hy by

[B”eip =

Hy(Y) = 2y(y) - DT,
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For y € B, there is at most one vy € T for which y(y) > %3 hence HB cC A.

Evidently HeY = eY for y € ' and 1B 2.

|B“£ip =

THEOREM 2 (Y. Benyamini). Suppose that X 1is a metric space, Y 1is a subset

of X with d(x,y) 2 e >0 for all x#y €Y, Z is a Banach space, and

f:Y->2 is Lipschitz. Then there is an extension f : X+~ 2 of f so that

2,5, = Gore)liel

where D is the diameter of Y,

PROOF. Represent
Y = {0} U {yY : vy €T}

and assume, by translating £, that f(0) = 0, We can factor f through the
subset C = {0} U {eY :y €T} of £ () by defining g :Y~+C, h:C~>2
by
=e 0) =0
g(y,) v g(0)

h(eY) = f(yY), h(0) = 0.

Evidently,

< <

By the non-linear Hahn-Banach theorem, g has an extension to a function

g: X~ £ (T) with ”gHZip = “gulip’ so to complete the proof, it suffices to

= |In|

extend h to a function h : B - Z with |l and apply Lemma 6(ii).

Lip Lip

Define for 0 =t =1 and ¥y €T

h(tev) = th(eY).

If 12t=2s20 and v # A €T then

A

Ince) - hesepll = (e-s)lace )]+ s lInCe,) = nee)|

= (t-s)|nll

+

pap + Sl = bl lice - sy,

so by, = bl . o
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