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EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE 

1 2 William B. Johnson and Joram Lindenstrauss 

INTRODUCTION 

In this note we consider the following extension problem for Lipschitz 

functions: Given a metric space X and n = 2, 3, 4, ... ' estimate the 
smallest constant L = L(X, n) so that every ~pping f from every n-element 
subset of X into t 2 extends to a mapping f from X into t 2 with 

(Here ll&lltip is the Lipschitz constant of the function g.) A classical re-
sult of Kirszbraun's [14, p. 48] states that L(t2, n) = 1 for all n, but 
it is easy to see that L(X, n) ~ ~ as n ~ ~ for many metric spaces X. 

Marcus and Pisier [10] initiated the study of L(X, n) for X = Lp. (For 
brevity, we will use hereafter the notation L(p, n) for L(Lp(O,l), n).) 
They prove that for each 1 < p < 2 there is a constant C(p) so that for 
n = 2, 3, 4, , , , 

1/p - 1/2 L(p, n) ~ C(p) (Log n) • 

The main result of this note is a verification of their conjecture that for 
some constant C and all n = 2, 3, 4, , , , 

L(X, n) ~ C(Log n) l/ 2 

for all metric spaces X. While our proof is completely different from that 
of Marcus and Pisier, there is a common theme: Probabilistic techniques de-
veloped for linear theory are combiaed with Kirszbraun's theorem to yield ex-
tension theorems. 

The main tool for proving Theorem 1 is a simply stated elementary geome-
tric lemma, which we now describe: Given n points in Euclidean space, what 
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190 JOHNSON AND LINDENSTRAUSS 

is the smallest k = k(n) so that these points can be moved into k-dimensional 

Euclidean space via a transformation which expands or contracts all pairwise 

distances by a factor of at most 1 + e? The answer, that k ~ C(e) Log n, is 
a simple consequence of the isoperimetric inequality for the n-sphere in the 

form studied in [2]. 

It seems likely that the Marcus-Pisier result and Theorem 1 give the right 
order of growth for L(p, n). While we cannot verify this, in Theorem 3 we get 

the estimate 

L(p, n) 
::: 6 ( Log n ) 1/p - 1/2 

Log Log n (1 ~ p < 2) 

for some absolute constant 6 > 0. (Throughout this paper we use the conven-

tion that Log X denotes the maximum of 1 and the natural logarithm of x.) 
This of course gives a lower estimate of 

( Log n 
n) 

1/2 
6 Log Log 

for L(~, n). That our approach cannot give a lower bound of 
6(Log n)l/p - l/ 2 for L(p, n) is shown by Theorem 2, which is an extension 

theorem for mappings into e2 whose domains are e-separated. 

The minimal notation we use is introduced as needed. Here we note only 

that By(y, e) (respectively, by(y, e)) is the closed (respectively, open) 

ball in Y about y of radius e. If y = 0, we use By(e) and by(e), 
and we drop the subscript Y when there is no ambiguity. S(Y) is the unit 
sphere of the normed space Y. For isomorphic normed spaces X and Y, we 

let 

d(X, Y) ~ inf II Til !I T-111, 

where the inf is over all invertible linear operators from X onto Y. Given 

a bounded Banach space valued function f on a set K, we set 

1. THE EXTENSION THEOREMS 

llfll~ = sup llf(x)[l. 
xEK 

We begin with the geometrical lemma mentioned in the introduction. 

LEMMA 1. For each 1 > ~ > 0 there is a constant K = K(~) > 0 so that if 
n Act 2 , A= n for some n = 2, 3, ••. , then there is a mapping 

onto a subset of e~ (k _ [K log n]) which satisfies 

f from A 

Licensed to Stanford Univ.  Prepared on Wed Mar 30 15:53:46 EDT 2022for download from IP 171.64.66.240.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



EXTENSIONS OF LIPSCHITZ MAPPINGS 191 

PROOF. The proof will show that if one chooses at random a rank k orthogonal 
n projection on t 2 , then, with positive probability (which can be made arbitra-

rily close to one by adjusting k), the projection restricted to A will 
satisfy the condition on f. To make this precise, we let Q be the projec-
tion onto the first k coordinates of l~ and let cr be normalized Haar 

n measure on O(n), the orthogonal group on t 2 • Then the random variable 

defined by 

n f: (O(n), cr) 4 L(t 2) 

f(u) U* QU 

determines the notion of "random rank k projection." The applications of 
Levy's inequality in the first few self-contained pages of [2] make it easy to 
check that f(u) has the desired property. For the convenience of the reader, 
we follow the notation of [2). 

Let I I 1•1 II denote the usual Euclidean norm on In and for 1 ~ k ~ n 
and x E In set 

r(x) 

which is equal to 

fur our eventual choice of k 
which satisfies 

= vn (. ~ x(i) 2\ 
]. = 1 } 

vn IIIQxlll 

[K log n]. Thus r(•) 

r(x) ~Vn lllxlll 

1/2 

is a semi-norm on 

(In [2], r(•) is assumed to be a norm, but inasmuch as the left estimate 
a! I !xi I I ~ r(x) in formula (2.5) of [2] is not needed in the present situation, 
it is okay that r(•) is only a semi-norm.) 

Setting 

B n-1 
s ' 

we want to select U E O(n) so that for some constant M, 
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192 JOHNSON AND LINDENSTBAUSS 

M(l ~ ~) ~ r(Ux) ~ M(l + ~) (x E B) 

Let Mr be the median of r(•) n-1 on S , so that 

and 

~ 1 [x E Sn-l : r(x) ~ M ] ~ 1/2 n- r 
n-1 where ~n-l is normalized rotationally invariant measure on S • 

n-1 We have from page 58 of [2] that for each y E S and e > 0, 

a[U E O(n) : Mr - Vn e ~ r(Uy) ~ Mr + Vn e] :::: 1 - 4 exp ( -n~ 2 ). 

Hence 

(1.1) a[U E O(n) M - Vn e ~ r(Uy)) ::: M + Vn e for all y E B) :::: r r 

:::: 1 - 2n(n+l) exp (-n~ 2 ). 

By Lemma 1.7 of [2], there is a constant 

so that 

(1.2) 

.. 
c ~ 4 

m = 1 
(m+l) 

2 -m /2 e 

II r(x) d~n-l(x) - Mrl < C • 
8n-l 

We now repeat a known argument for estimating I r(x) ~n-l(x) which uses 
only Khintchine's inequality. 8n-l 

For 1 ::: k ::: n we have: 

Setting 

k 
Av ! 1 I Z ± x(i) I d~ 1 (x) • 

± sn- i = 1 n-

k 
= Av ! I< x, Z ± 6i >I d~ _1 (x) 

± sn-1 i • 1 n 

= Yk /n-11< x, <\>I ~n-l(x) 
s 

rby the rotational ] 

Linvariance of ~n-l 
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EXTENSIONS OF LIPSCHITZ 193 

we have from Khintchine 1s inequality that for each 1 ~ k ~ n, 

Vnk a ~ J 1 rk(x) c\1. 1(x) ~ V2nk a n sn- n- n 

(l:e plugged in the exact constant of VZ in Khintchine's inequality calcu-
lated in [5] and [13], but of course any constant would serve as well.) 
Since obviously r (x) = y-n we conclude that for 1 ~ k ~ n n , 

(1. 3) Vk/ ~ J n-1 rk (x) ~n-1 (x) ~ Vk · 
s 

Specializing now to the case k 

that 

[K log n], we have from (1.2) and (1.3) 

at least for K log n sufficiently large. Thus if we define 

we get from (1.1) that 

o [U E O(n) : (1 - -r)M ~ r(Uy) ~ (1 + 't")M for all y E B] r r 

::: 1 - 2n(n + 1) exp (- ,.~sk) 

(- T 
2 K log n) ::: 1 - 2n(n + 1) exp 18 

which is positive if, say, 

D 

It is easily seen that the estimate K log n in Lemma 1 cannot be im-
proved. Indeed, in a ball of radius 2 in e~ there are at most 4k vectors 

{xi} so that llxi - xj II 0:: 1 for every i {< j (see the proof of Lemma 3 
below). Hence for 't" sufficiently small there is no map F which maps an 

k orthonormal set with more than 4 vectors into a k-dimensional subspace of 
e2 with 

We can now verify the conjecture of Marcus and Pisier [~0]. 
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194 JOHNSON AND LINDENSTRAUSS 

THEOREM 1. Sup (log n)- 112 L(~, n) < ~. In other words: there is a 
n '"' 2, 3, 

constant K so that for all metric spaces X and all finite subsets M of X 
(card M = n, say) every function f from M into t 2 has a Lipschitz exten-
sion f : X 4 t 2 which satisfies 

PROOF. Given X, M c X with card M = n, and f: M4 t 2 , 

We apply Lemma 1 with ~ = 1/2 to get a one-to-one function 
set 
-1 g 

-1 k a subset g [A] of t 2 (where k ~ K log n) which satisfies 

By Kirszbraun's theorem, we can extend g to a function g 
a way that 

N 

IJgiiHp ~ 3 • 

Let I tk 4 tk denote the formal identity map, so that 2 ~ 

Then 

-l h : M 4 tk h : Ig f, ~ 

A = f [M]. 

from A onto 

has Lipschitz norm at most 
(see, e.g., p. 48 of [14]), 

liflltip' so by the non-linear Hahn-Banach theorem 
h can be extended to a mapping 

which satisfies 

Then 

N -1 N 

f : g I h; f X 4 t 2 

is an extension of f and satisfies 

[J 
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EXTENSIONS OF LIPSCHITZ MAPPINGS 

Next we outline our approach to the problem of obtaining 
f the inclusion mapping from an e-net for 

195 

a lower bound for 
SN-l into eN 

2' L(~,n). Take for 
and consider e~ isometrically embedded into L~. A Lipschitz extension of f 

to a mapping f : L -+ e .. 2 should act like the identity so the techniques 

of (8] should yield a linear projection from L.., onto whose norm is of 

order II fll e ip. Since is complemented in L.., only of order v-N and there 

are e-nets for of cardinality N 
n = [4/e] , we should get that 

L(00 ,n) ::: VN::: ( ) 
1/2 

15 Log n 
- Loge 

In Theorem 2 we make this approach work when e is of order 

L(oo ,n) ;:: 15' og n (
. L )1/2 

-2 N , so we get 

That the difficulties we incur with the outlined approach for larger values 
of e are not purely technical is the gist of the following extension result. 

(*)THEOREM 2. Suppose that X is a metric space, AC X, f: A-+ e2 is 
Lipschitz and d(x,y) ::: e > 0 for all x + y E A. Then there is an extension 
f : X -+ l 2 of f so that 

where D is the diameter of A. 

PROOF. We can assume by translating f that there is a point 0 E A so that 
f (O) = 0. Set B =A~ {0} and define 

F A-+ eB 
1 by 

-e·· b + :} . F (b) 
0, b = 

Define 
G B 

ll-+l2 
by 

G( l: ab 15b) l: ab f (b) • 
b E B b E B 

(*) See the appendix for a generalization of Theorem 2 proved by YoavBenyamini. 
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196 JOHNSON AND LINDENSTRAUSS 

Then 

G F = f, G is linear with 

A weakened form of Grothendieck's inequality (see section 2.6 in [9]) 
yields that G (as any bounded linear operator from an L1 space into a 
Hilbert space) factors through an l~(~) space: 

G = H J, IIJII = 1, IIHII ~ 3 IIGII, 

By the non-linear Hahn-Banach Theorem the mapping J F has an extension 

E : X 4 l~(M) which satisfies 

IIEIIlip ~ IIJ Fillip ~ 2/f-. 

Then 
~ 6D 

f : H E extends f and ilfll ::; e ilflllip' as desired. 0 

For the proof of Theorem 3, we need three well known facts which we state 
as lemmas. 

LEMMA 2. Suppose that Y, X are normed spaces and f : S(Y) 4 X is Lipschitz 
with f (0) = 0. Then the positively homogeneous extension of f, defined for 
y E Y by 

£ <Y> = IIYII f(n~u} <Y " o>; f <o> = o 

is Lipschitz and 
~ 

ilflllip ::: 2 ilflllip + ilfll~. 

PROOF. Given y 1, y 2 E Y with 0 < IIY 1 11 ::: IIY 2 11 , 

,,,(y ,> _ ,(y ,>II ~ II IIY ,11 ,~,: :~,) _ IIY ,11 ,~~: :~~) II + IIY ,11 II ,~~~:~v , f~) II 

~ ~~ 2 11 - lly 1 1~ 11'~~:11) II+ 102 11 11£11"• II ~~:II- ~~:II II 
IIY2 11 

::: IIY1 - Y2 11 llfH~ + llflleip I! -iiY'Jf Y1 - Y2 II 
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EXTENSIONS OF LIPSCHITZ MAPPINGS 197 

0 

LEMMA 3. If y is an n-dimensional Banach space and 0 < e, then S(Y) ad-

mits an e-net of cardinality at most (1 + 4/e)n. 

PROOF. Let M be a subset of S(Y) maximal with respect to "1/x-yll ::: e for 

all X# y E M". 

Then the sets 

b(y, e/2) n S(Y)•, (y E M) 

are pairwise disjoint hence so are the sets 

b(y, e/4), (y E M). 

Since these last sets are all contained in b(l + e/4), we have that 

card M • vol b(e/4) ~ vol b(l + e/4) 

so that 

card M ~ [ t ( 1 + e I 4) J n . 0 

LEMMA 4. There is a constant o > 0 so that for each 1 ~ p < 2 and each 
N = 1, 2, ••• ' L p contains a subspace E such that 

d(E •N) < 2 • "2 -

and every projection from L onto E has norm at least p 

0 N 1/p - 1/2 • 

PROOF. Given a finite dimensional Banach space X and 1 ~ p < ~. let 

Y (x) p 

So y~(X) is the projection constant of X, hence by [4], [12] 

This gives the p 1 case. 
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198 JOHNSON AND LINDENSTRAUSS 

For 1 < p < 2 we reduce to the case p = 1 by using Example 3.1 of [2), 
which asserts that there is a constant C < .. so that for 1 :::: p < 2 l CN 

contains a subspace E with d(E, l~):::: 2. Since, obviously, P 

we get that if E is K-complemented in then 

11-1/2 (2n)l/2 = yl(lN2) :::: d( lN) (lCN eCN) E, 2 d p , l K 

:::: 2 (CN) 1 - l/p K. D 

The next piece of background information we need for Theorem 3 is a linear-
ization result which is an easy consequence of the results in [8]. 

PROPOSITION 1. Suppose X c Y and Z are Banach spaces, f : Y ~ z is 
Lipschitz, and U: x~ Z is_bounded, linear. Then there is a linear operator 
G : Z* ~ Y* so that II Gil :::: II fll •. and 

"J.P --

where R2 is the natural restriction map from Y* onto X*. 

REMARK. Note that if Z is reflexive, the mapping F = G*ly 

IIFII :::: lltlllip and IIFix- ull :::: llflx- ulllip' 

Y ~ Z satisfies 

PROOF. We first recall some notation from [8). If Y is a Banach space, Y# 
II denotes the Banach space of all scalar valued Lipschitz functions y from Y 

for which /(O) = 0, with the norm 11/llli . There is an obvious isometric * # p inclusion from Y into Y . For a Lipschitz mapping f : Y ~ Z, Z a normed 
space, we can define a linear mapping 

* z f. 

Given Banach spaces X c Y, Theorem 2 of [8] asserts that there are norm one 
linear projections 

so that 
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EXTENSIONS OF LIPSCHITZ MAPPINGS 199 

where I # R1 is the restriction mapping from Y onto X • Thus if 
X c Y, f, u, Z are as in the hypothesis of Proposition 1, the linear mapping 
P i 1 satisfies y 

Since U: X~ Z is linear, 

so 

u* = P u11 
X 

II 11 1111 II I * 11 z"'ll ~ R1 f - U ~ sup R1 f z - U 
* * z E S(Z ) 

* * .sup ~(z f) IX - z ull ~ llf IX - ulltip" 
z E S(Z ) 

0 

The final lemma we use in the proof of Theorem 3 is a smoothing result for 
homogeneous Lipschitz functions. 

LEMMA 5. Suppose X c Y and Z are Banach spaces with dim X = k < ~. 

F: Y ~ Z is Lipschitz with F positively homogeneous (i.e. F(Ay) = A F(y) 
for A~ 0, y E Y) and U: x~ Z is linear. Then there is a positively 
homogeneous Lipschitz mapping 

N 

F : Y ~ Z which satisfies 

(1) :!FIX- uutip ~ (Sk + 2) IIFIS(X) - uls<x>"~ 

(2) !IF!Itip ~ 4 IIFIItip" 

PROOF. For y E S(Y) define 

... 
Fy • JB (l)F(y+x) ~(x) 

X 

where ~(·) is Haar measure on X (~IRk) normalized so that 

For y1, y2 E S(Y) we have 
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200 JOHNSON AND LINDENSTRAUSS 

so 

For x1 , x2 E S(X) with /lx1 - x211 = o > 0 we have, since U is linear, 
that 

f B (1) U(x2 + x) d!J.(x) II ::: 
X 

Since 

we have if o ::: 1 that 

::: 2 k 0 

and hence for all x1 , x2 E S(X) that 

whence 

fsince F is posi-] 

~ively homogeneous 
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EXTENSIONS OF LIPSCHITZ MAPPINGS 201 

Finally, note that the positive homogeniety of F implies that 

A A 

II F/1 oo :: 2 II Fillip and IIF!s(X) - UJS(X)IIoo:: 2 IIFJs(X) - UJS(X)iloo. 

It now follows from Lemma 2 that the positively homogeneous extension F 
A 

of F satisfies the conclusions of Lemma 5. o 

THEOREM 3. There is a constant ~ > 0 so that for all n = 2, 3, 4, ••• and 
all 1 :: p < 2, 

> ( Log n ) 1/p - 1/2 
L(p,n) - 1: Log Log n 

REMARK. Since L(00 ,n) ~ L(l,n), we get the lower estimate for L(oo,n) men-
tioned in the introduction. 

PROOF. Given p and n, for a certain value of N = N(n) to be specified 
later choose a subspace E of L with d(E, t~) :: 2 and 
5 Nl/p- 112-complemented in L p(Lemma 4). For a value 

p 

E only 
e = e (n) > 0 

be specified later, let A be a minimal e-net of S(E), so, by Lemma 3, 

N card A :: (1 + 4/e) . 

One relation among n, N, e we need is 

(1.4) (1 + 4/e)N + 1 :: n. 

to 

Let f:AU{O}-+E betheidentifymap. Since d(E,l~)::2, wecanby 
Lemma 2 get a positively homogeneous extension f L -+ E of f so that p 

Since f(a) = f(a) 
for x E S(E), 

/lf/ltip :: 6 L(p,n). 

a for a E A and A is an e-net for S(E), we get that 

/lf(x) - x/1 :: (6 L(p,n) + 1) e. 

Therefore, from Lemma 5 we get a Lipschitz mapping f : L -+ E which satisfies p 
A 

llf/llip :: 24 L(p,n) 

A 

(1.5) llf IE - IE/I :: (SN + 2) (6 L(p,n) + l)e. 
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202 JOHNSON AND LINDENSTRAUSS 

Note that if 

(1. 6) (8N + 2)(6 L(p,n) + 1)~ ~ 1/2, 

(1.5) implies that there is a linear projection from L onto E with norm at p 
most 48 L(p,n), so we can conclude that 

L(p,n) > 6/48 Nl/p - l/ 2 

Finally, we just need to observe that (1.4) and (1.6) are satisfied (at 
least for sufficiently large n) if we set 

-2 Log n, N Log n 
0 2 Log Log n 

2. OPEN PROBLEMS. 

Besides the obvious question left open by the preceding discussion (i.e. 
whether the estimate for L(~,n) given in Theorem 1 is indeed the best pos-
sible), there are several other problems which arise naturally in the present 
context. We mention here only some of them. 

PROBLEM 1. Is it true that for 
every Lipschitz map f from X 
from L (0,1) into ek with p 2 

(2 .1) 

where C(p) depends only on p? 

1 < p < 2, every subset X of 
into ek there is an extension 2 

L (0,1), Np 
f of f 

and 

A positive answer to problem 1 combined with Lemma 1 above will of course 
provide an alternative proof to the result of Marcus and Pisier [10] mentioned 
in the introduction. The linear version of problem 1 (where X is a subspace 
and f a linear operator) is known to be true (cf. [7] and [3]). 

PROBLEM 2. What happens in the Marcus-Pisier theorem if 2 < p < ~? Is the 
Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true? 
In other words, is it true that for 2 < p < ~ there is a c(p) such that 
for every Lipschitz map 
a Lipschitz extension f 

f from a subset X of 
from L (0,1) into e2 -- p 

L (0, 1) p 
with 

into there is 
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EXTENSIONS OF LIPSCHITZ MAPPINGS 203 

PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces 

different from Hilbert spaces7 The most interesting special case seems to be 

concerning the spaces e:. It is well known that every finite metric space 

X: {x.}~ 1 embeds isometrically into ln (the point x1• is mapped to the 
~ 1.= 03 

n-tuple {d(x1 , xi), d(x2 , xi), ..• , d(xn' xi)} in l~). Hence in view of 
Lemma 1 it is quite natural to ask the following. Does there exist for all 

E > 0 (or alternatively for some E > 0) a constant K(E) so that for every 
metric space X with cardinality n there is a Banach space Y with 

dim Y ~ K(E)log n and a map f from X into Y so that 

I~ f/1 e ip II f- 111e ip ~ 1 + d 
A weaker version of Problem 3 is 

PROBLEM 4. It is true that for every metric space X with cardinality n 

there is a subset X in e2 and a Lipschitz map F from X onto X so that 

(2. 2) -1 --11 F!l 0 • II F II 0 • ~ K v'log n 
vl.P vl.P 

for some absolute constant K? 

Since for every Banach space Y with dim Y : k we have 

d(Y, l~) ~ v'ik (cf. [6]) it is clear that a positive answer to problem 3 im-

plies a positive answer to problem 4. V. Milman pointed out to us that it 

follows easily from an inequality of Enflo (cf. [1]) that (2.2), if true, gives 

the best possible estimate. (In the notation of (1], observe that the "m-cube" 

in em 
1 has all "diagonals'' of length 2m and all "edges" of length 2, so that 

if F is any Lipschitz mapping from these 2m points in em 
1 into a Hilbert 

space, the corollary in (1] implies that 

3. APPENDIX. 

After this note was written, Yoav Benyamini discovered that Theorem 2 re-

mains valid if e2 is replaced with any Banach space. He kindly allowed us to 
reproduce here his proof. The main lemma Benyamini uses is: 

LEMMA 6. Let r be an indexing set and let {ey}y E r be the unit vector 
basis for c0 (f). Set 
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204 

Then 

(i) there is 

IIGIIlip ~ 2 

JOHNSON AND LINDENSTRAUSS 

A = {a e : 0 ~ a ~ 1; y E r} 
y 

B = conv A(= positive part of Be (r)). 
1 

a retraction G from e .. <n onto B which satisfies 

(ii) there is a mappin~ H from l co (r) .into A which satisfies 

IIHIIlip ~ 4 and He = e for all y E r. 
y y 

+ PROOF. Since the mapping x ~ x is a. contractive retraction from lco(r) 
onto its positive cone, lco(r)+; to prove (i) it is enough to define G only 
on l (r)+. co 

+ For y E lco(f) , let 

+ g(y) = inf { t : II (y - te) 1/ 1 ~ 1} 

where e E lco(r) is the function identically equal to one and 1/·11 1 is the 
usual norm in t 1(r). Clearly the inf is actually a minimum and 

0 ~ g(y) ~ IIYIIco. Note that 

lg(y) - g(z) I ~ 1/y-z//co. 

Indeed, assume that g(y) ~ g(z). Then 

y - [g(z) + liy-zllco e] ~ y - g(z)e + z - y ~ z - g(z)e 

and hence 

that is 

+ Now set for y E eco(r) 

+ li(y-[g(z) + liy-zllcoJe) 11 1 < 1; 

g(y) ~ g(z) + liy-zllco. 

+ G(y) = (y - g(y)e) . 

To prove (ii), it is enough, in view of (i), to define H on B with 

IIHIB"eip ~ 2. For y E B, y = {y(y)}y E r· defined Hy by 

Hy(y) = (2y(y) - 1)+. 
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For y E B, there is at most one y E r for which 

Evidently Hey= ey for y E r and IIHIB,,tip ::: 2. 

1 
y(y) > 2· hence HB c A. 

THEOREM 2 (Y. Benyamini). Suppose that X is a metric space, Y is a subset 
of X with d(x,y) ~ e > 0 for all x ~ y E Y, Z is a Banach space, and 

~ 

f: Y ~ Z is Lipschitz. Then there is an extension f: x~ Z of f so that 

where D is the diameter of Y. 

PROOF. Represent 

Y {O} u {y : y E r} y 

and assume, by translating f, that f(O) = 0. We can factor f through the 
subset C = {0} U {ey : y E f} of t~(f) by defining g : Y ~ C, -h: C ~ Z 
by 

Evidently, 

g(yy> = ey, g(O) = 0 

h(e) = f(y ), h(O) = 0. y y 

By the non-linear Hahn-Banach theorem, g has an extension to a function 
g : X~ t~(r) with llglltip = llglltip' so to complete the proof, it suffices to 

extend h to a function h: B ~ Z with lihlltip = llhlltip and apply Lemma 6(ii). 

Define for 0 ::: t s 1 and y E f 

If 1 ~ t ~ s ~ 0 and y ~ ~ E f then 
~ ~ 

lih( tey) - h(se ~)II ::: ( t-s) llh(ey> II+ s llh(e ~) - h(ey) II 

::: (t-s)llhlltip + sllhlltip = llhlltiplltey- se~ll~, 

II hilt .. 
~p D 
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