
Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

2.3 Finite State Machine (FSM)
Concept and Implementation

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Topics
•  Finite State Machine (FSM)

•  What are FSM’s
•  Why / When to use FSM

•  Implementing of Finite State Machines
• Home Work Assignment (part 2)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What Is A Finite State Machine
(a.k.a Finite-state Automaton)

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

An Example

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

FSM Examples in Daily Live
• Vending Machines
•  Traffic Lights
• Elevators
• Alarm Clock
• Microwave
• Cash Registers

Each of these devices can be thought of as a reactive system - that
is because each of them work by reacting to signals or inputs from
the external world.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

What Is A Finite State Machine
• A reactive system whose response to a particular stimulus

(a signal, or a piece of input) is not the same on every
occasion, depending on its current “state”.

•  For example, in the case of a parking ticket machine, it
will not print a ticket when you press the button unless you
have already inserted some money. Thus the response to
the print button depends on the previous history of the use
of the system.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

More Precisely (Formally)
• A Finite State Machine is defined by (Σ,S,s0,δ,F), where:

•  Σ is the input alphabet (a finite, non-empty set of symbols).
•  S is a finite, non-empty set of states.
•  s0 is an initial state, an element of S.
•  δ is the state-transition function: δ : S x Σ → S
•  F is the set of final states, a (possibly empty) subset of S.
•  O is the set (possibly empty) of outputs

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

A (Simplified) Ticket Machine
•  Σ (m, t, r) : inserting money, requesting ticket,

requesting refund
•  S (1, 2) : unpaid, paid
•  s0 (1) : an initial state, an element of S.
•  δ (shown below) : transition function: δ : S x Σ →

S
•  F : empty
•  O (p/d) : print ticket, deliver refund

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Acceptors and Transducers
• Acceptors: no output, have final states
•  Transducers: non-empty set of output

Acceptor Transducer

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Deterministic and Non-Deterministic
• Non-deterministic: Competing “Transitions” Leaving Same

State

We only concern ourselves with Deterministic FSM in this
class

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

How To Implement an FSM
•  The Finite State Machine class keeps track of the current

state, and the list of valid state transitions.
• You define each transition by specifying :

•  FromState - the starting state for this transition
•  ToState - the end state for this transition
•  condition - a callable which when it returns True means this

transition is valid
•  callback - an optional callable function which is invoked when this

transition is executed.

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Simplest FSM

A B
Press/click “b”

Press/click “a”

Start

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Why Finite State Machines For Robot
• Response to an event is dependent on the “state” of the

robot

Turn-left, turn-right

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Two Robot Examples
• Obstacle Avoidance Example
•  “Escape” Example

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Home Work #2-2: “Cleaner”
(Push Out “Trash”)

•  Trash: small white boxes,
about same size as robot,
very light

•  No other obstacles inside
boundary except trash

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

Clean Out Trash

Stanford University (cs123.stanford.edu) © Kyong-Sok (KC) Chang & David Zhu

HW Specification
• Push out trash to outside of boundary (black tape) – at

least half of the “box” is outside of boundary
•  Indicate (with sound or light) that track has been pushed

out
• Quit (success condition) after pushing 3 pieces of trash

out
• Assumptions:

•  No other object inside boundary except trash
•  Trash are small white boxes about the same size as the robot

